Онлайн
библиотека книг
Книги онлайн » Медицина » Живи долго! Научный подход к долгой молодости и здоровью - Майкл Грегер

Шрифт:

-
+

Закладка:

Сделать
1 ... 467 468 469 470 471 472 473 474 475 ... 510
Перейти на страницу:
G, Chiara TD, Curto AL, Taverna S, Candore G. Circulating miRNAs in successful and unsuccessful aging. A mini-review. Curr Pharm Des. 2019;25(39):4150–3. https://pubmed.ncbi.nlm.nih.gov/31742494/

7173

Smith-Vikos T, Liu Z, Parsons C, et al. A serum miRNA profile of human longevity: findings from the Baltimore Longitudinal Study of Aging (BLSA). Aging (Albany NY). 2016;8(11):2971–87. https://pubmed.ncbi.nlm.nih.gov/27824314/

7174

Kumar P, Dezso Z, MacKenzie C, et al. Circulating miRNA biomarkers for Alzheimer’s disease. PLoS One. 2013;8(7):e69807. https://pubmed.ncbi.nlm.nih.gov/23922807/

7175

Wu S, Kim TK, Wu X, et al. Circulating microRNAs and life expectancy among identical twins. Ann Hum Genet. 2016;80(5):247–56. https://pubmed.ncbi.nlm.nih.gov/27402348/

7176

Kalarikkal SP, Sundaram GM. Inter-kingdom regulation of human transcriptome by dietary microRNAs: emerging bioactives from edible plants to treat human diseases? Trends Food Sci Technol. 2021;118:723–34. https://www.sciencedirect.com/science/article/abs/pii/S0924224421005999

7177

Dávalos A, Pinilla L, López de Las Hazas MC, et al. Dietary microRNAs and cancer: a new therapeutic approach? Semin Cancer Biol. 2021;73:19–29. https://pubmed.ncbi.nlm.nih.gov/33086083/

7178

Gkotzamanis V, Magriplis E, Panagiotakos D. The effect of physical activity interventions on cognitive function of older adults: a systematic review of clinical trials. Psychiatriki. Published online February 21, 2022.; https://pubmed.ncbi.nlm.nih.gov/35255465/

7179

Pisani S, Mueller C, Huntley J, Aarsland D, Kempton MJ. A meta-analysis of randomised controlled trials of physical activity in people with Alzheimer’s disease and mild cognitive impairment with a comparison to donepezil. Int J Geriatr Psychiatry. 2021;36(10):1471–87. https://pubmed.ncbi.nlm.nih.gov/34490652/

7180

Wang Y, Veremeyko T, Wong AHK, et al. Downregulation of miR-132/212 impairs S-nitrosylation balance and induces tau phosphorylation in Alzheimer’s disease. Neurobiol Aging. 2017;51:156–66. https://pubmed.ncbi.nlm.nih.gov/28089352/

7181

Lugli G, Cohen AM, Bennett DA, et al. Plasma exosomal miRNAs in persons with and without Alzheimer disease: altered expression and prospects for biomarkers. PloS One. 2015;10(10):e0139233. https://pubmed.ncbi.nlm.nih.gov/26426747/

7182

Radom-Aizik S, Zaldivar F, Leu S, Adams GR, Oliver S, Cooper DM. Effects of exercise on microRNA expression in young males peripheral blood mononuclear cells. Clin Transl Sci. 2012;5(1):32–8. https://pubmed.ncbi.nlm.nih.gov/22376254/

7183

Nielsen S, Åkerström T, Rinnov A, et al. The miRNA plasma signature in response to acute aerobic exercise and endurance training. PLoS One. 2014;9(2):e87308. https://pubmed.ncbi.nlm.nih.gov/24586268/

7184

Fernández-de Frutos M, Galán-Chilet I, Goedeke L, et al. MicroRNA 7 impairs insulin signaling and regulates aß levels through posttranscriptional regulation of the insulin receptor substrate 2, insulin receptor, insulin-degrading enzyme, and liver X receptor pathway. Mol Cell Biol. 2019;39(22):e00170–19. https://pubmed.ncbi.nlm.nih.gov/31501273/

7185

Denk J, Boelmans K, Siegismund C, Lassner D, Arlt S, Jahn H. MicroRNA profiling of CSF reveals potential biomarkers to detect Alzheimer’s disease. PloS One. 2015;10(5):e0126423. https://pubmed.ncbi.nlm.nih.gov/25992776/

7186

Nielsen S, Åkerström T, Rinnov A, et al. The miRNA plasma signature in response to acute aerobic exercise and endurance training. PloS One. 2014;9(2):e87308. https://pubmed.ncbi.nlm.nih.gov/24586268/

7187

Barber JL, Zellars KN, Barringhaus KG, Bouchard C, Spinale FG, Sarzynski MA. The effects of regular exercise on circulating cardiovascular-related microRNAs. Sci Rep. 2019;9(1):7527. https://pubmed.ncbi.nlm.nih.gov/31101833/

7188

Wu Y, Xu J, Xu J, et al. Lower serum levels of miR-29c-3p and miR-19b-3p as biomarkers for Alzheimer’s disease. Tohoku J Exp Med. 2017;242(2):129–36. https://pubmed.ncbi.nlm.nih.gov/28626163/

7189

Arena A, Iyer AM, Milenkovic I, et al. Developmental expression and dysregulation of miR-146a and miR-155 in Down’s syndrome and mouse models of Down’s syndrome and Alzheimer’s disease. Curr Alzheimer Res. 2017;14(12):1305–17. https://pubmed.ncbi.nlm.nih.gov/28720071/

7190

Alexandrov PN, Dua P, Hill JM, Bhattacharjee S, Zhao Y, Lukiw WJ. MicroRNA (miRNA) speciation in Alzheimer’s disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). Int J Biochem Mol Biol. 2012;3(4):365–73. https://pubmed.ncbi.nlm.nih.gov/23301201/

7191

Sawada S, Kon M, Wada S, Ushida T, Suzuki K, Akimoto T. Profiling of circulating microRNAs after a bout of acute resistance exercise in humans. PLoS One. 2013;8(7):e70823. https://pubmed.ncbi.nlm.nih.gov/23923026/

7192

Li Y, Yao M, Zhou Q, et al. Dynamic regulation of circulating microRNAs during acute exercise and long-term exercise training in basketball athletes. Front Physiol. 2018;9:282. https://pubmed.ncbi.nlm.nih.gov/29662456/

7193

Baggish AL, Hale A, Weiner RB, et al. Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. J Physiol. 2011;589(Pt 16):3983–94. https://pubmed.ncbi.nlm.nih.gov/21690193/

7194

Baggish AL, Park J, Min PK, et al. Rapid upregulation and clearance of distinct circulating microRNAs after prolonged aerobic exercise. J Appl Physiol (1985). 2014;116(5):522–31. https://pubmed.ncbi.nlm.nih.gov/24436293/

7195

Improta-Caria AC, Nonaka CKV, Cavalcante BRR, De Sousa RAL, Aras Júnior R, Souza BS de F. Modulation of microRNAs as a potential molecular mechanism involved in the beneficial actions of physical exercise in Alzheimer disease. Int J Mol Sci. 2020;21(14):E4977. https://pubmed.ncbi.nlm.nih.gov/32674523/

7196

Majidinia M, Karimian A, Alemi F, Yousefi B, Safa A. Targeting miRNAs by polyphenols: novel therapeutic strategy for aging. Biochem Pharmacol. 2020;173:113688. https://pubmed.ncbi.nlm.nih.gov/31682793/

7197

García-Segura L, Pérez-Andrade M, Miranda-Ríos J. The emerging role of microRNAs in the regulation of gene expression by nutrients. J Nutrigenet Nutrigenomics. 2013;6(1):16–31. https://pubmed.ncbi.nlm.nih.gov/23445777/

7198

Daimiel L, Micó V, Valls RM, et al. Impact of phenol-enriched virgin olive oils on the postprandial levels of circulating microRNAs related to cardiovascular disease. Mol Nutr Food Res. 2020;64(15):2000049. https://pubmed.ncbi.nlm.nih.gov/32562310/

7199

López de Las Hazas MC, Gil-Zamorano J, Cofán M, et al. One-year dietary supplementation with walnuts modifies exosomal miRNA in elderly subjects. Eur J Nutr. 2021;60(4):1999–2011. https://pubmed.ncbi.nlm.nih.gov/32979076/

7200

Ortega FJ, Cardona-Alvarado MI, Mercader JM, et al. Circulating profiling reveals the effect of a polyunsaturated fatty acid – enriched diet

1 ... 467 468 469 470 471 472 473 474 475 ... 510
Перейти на страницу: