Онлайн
библиотека книг
Книги онлайн » Медицина » Живи долго! Научный подход к долгой молодости и здоровью - Майкл Грегер

Шрифт:

-
+

Закладка:

Сделать
1 ... 470 471 472 473 474 475 476 477 478 ... 510
Перейти на страницу:
Zhuang X, Wang Q, et al. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol Nutr Food Res. 2014;58(7):1561–73. https://pubmed.ncbi.nlm.nih.gov/24842810/

7264

Cavalieri D, Rizzetto L, Tocci N, et al. Plant microRNAs as novel immunomodulatory agents. Sci Rep. 2016;6:25761. https://pubmed.ncbi.nlm.nih.gov/27167363/

7265

Hou D, He F, Ma L, et al. The potential atheroprotective role of plant MIR156a as a repressor of monocyte recruitment on inflamed human endothelial cells. J Nutr Biochem. 2018;57:197–205. https://pubmed.ncbi.nlm.nih.gov/29751293/

7266

Ojagbemi A, Okekunle AP, Owolabi M, et al. Dietary intakes of green leafy vegetables and incidence of cardiovascular diseases. Cardiovasc J Afr. 2021;32(4):215–23. https://pubmed.ncbi.nlm.nih.gov/34128951/

7267

Kalarikkal SP, Sundaram GM. Inter-kingdom regulation of human transcriptome by dietary microRNAs: emerging bioactives from edible plants to treat human diseases? Trends Food Sci Technol. 2021;118:723–34. https://www.sciencedirect.com/science/article/abs/pii/S0924224421005999

7268

Ngo SNT, Williams DB. Protective effect of isothiocyanates from cruciferous vegetables on breast cancer: epidemiological and preclinical perspectives. Anticancer Agents Med Chem. 2021;21(11):1413–30. https://pubmed.ncbi.nlm.nih.gov/32972351/

7269

Li D, Yang J, Yang Y, et al. A timely review of cross-kingdom regulation of plant-derived microRNAs. Front Genet. 2021;12:613197. https://pubmed.ncbi.nlm.nih.gov/34012461/

7270

Xiang J, Huang JC, Xu C, et al. [Effect of miRNA from Glycyrrhiza uralensis decoction on gene expression of human immune cells]. Zhongguo Zhong Yao Za Zhi. 2017;42(9):1752–6. https://pubmed.ncbi.nlm.nih.gov/29082701/

7271

Qin Y, Zheng B, Yang G shan, et al. Salvia miltiorrhiza-derived Sal-miR-58 induces autophagy and attenuates inflammation in vascular smooth muscle cells. Mol Ther Nucleic Acids. 2020;21:492–511. https://pubmed.ncbi.nlm.nih.gov/32679544/

7272

Yang GS, Zheng B, Qin Y, et al. Salvia miltiorrhiza-derived miRNAs suppress vascular remodeling through regulating OTUD7B/KLF4/NMHC IIA axis. Theranostics. 2020;10(17):7787–811. https://pubmed.ncbi.nlm.nih.gov/32685020/

7273

Zhou LK, Zhou Z, Jiang XM, et al. Absorbed plant MIR2911 in honeysuckle decoction inhibits SARS-CoV-2 replication and accelerates the negative conversion of infected patients. Cell Discov. 2020;6(1):1–4. https://pubmed.ncbi.nlm.nih.gov/32802404/

7274

Avsar B, Zhao Y, Li W, Lukiw WJ. Atropa belladonna expresses a microRNA (aba-miRNA-9497) highly homologous to Homo sapiens miRNA-378 (hsa-miRNA-378); both miRNAs target the 3’-untranslated region (3’-UTR) of the mRNA encoding the neurologically relevant https://pubmed.ncbi.nlm.nih.gov/31456135/

7275

McNeill EM, Hirschi KD. Roles of regulatory RNAs in nutritional control. Annu Rev Nutr. 2020;40:77–104. https://pubmed.ncbi.nlm.nih.gov/32966184/

7276

Wang L, Sadri M, Giraud D, Zempleni J. RNase H2-dependent polymerase chain reaction and elimination of confounders in sample collection, storage, and analysis strengthen evidence that microRNAs in bovine milk are bioavailable in humans. J Nutr. 2018;148(1):153–9. https://pubmed.ncbi.nlm.nih.gov/29378054/

7277

Chen X, Liu L, Chu Q, et al. Large-scale identification of extracellular plant miRNAs in mammals implicates their dietary intake. PLoS One. 2021;16(9):e0257878. https://pubmed.ncbi.nlm.nih.gov/34587184/

7278

Igaz I, Igaz P. Hypothetic interindividual and interspecies relevance of microRNAs released in body fluids. Exp Suppl. 2015;106:281–8. https://pubmed.ncbi.nlm.nih.gov/26608210/

7279

Witwer KW, Zhang CY. Diet-derived microRNAs: unicorn or silver bullet? Genes Nutr. 2017;12:15. https://pubmed.ncbi.nlm.nih.gov/28694875/

7280

Sundaram GM. Dietary non-coding RNAs from plants: fairy tale or treasure? Noncoding RNA Res. 2019;4(2):63–8. https://pubmed.ncbi.nlm.nih.gov/31193509/

7281

McNeill EM, Hirschi KD. Roles of regulatory RNAs in nutritional control. Annu Rev Nutr. 2020;40:77–104. https://pubmed.ncbi.nlm.nih.gov/32966184/

7282

Link J, Thon C, Schanze D, et al. Food-derived xeno-microRNAs: influence of diet and detectability in gastrointestinal tract – proof-of-principle study. Mol Nutr Food Res. 2019;63(2):e1800076. https://pubmed.ncbi.nlm.nih.gov/30378765/

7283

Quintanilha B, Reis B, Duarte G, Cozzolino S, Rogero M. Nutrimiromics: role of microRNAs and nutrition in modulating inflammation and chronic diseases. Nutrients. 2017;9(11):1168. https://pubmed.ncbi.nlm.nih.gov/29077020/

7284

Mar-Aguilar F, Arreola-Triana A, Mata-Cardona D, Gonzalez-Villasana V, Rodríguez-Padilla C, Reséndez-Pérez D. Evidence of transfer of miRNAs from the diet to the blood still inconclusive. PeerJ. 2020;8:e9567 https://pubmed.ncbi.nlm.nih.gov/32995073/

7285

Wang W, Hang C, Zhang Y, et al. Dietary miR-451 protects erythroid cells from oxidative stress via increasing the activity of Foxo3 pathway. Oncotarget. 2017;8(63):107109–24. https://pubmed.ncbi.nlm.nih.gov/29291015/

7286

Teodori L, Petrignani I, Giuliani A, et al. Inflamm-aging microRNAs may integrate signals from food and gut microbiota by modulating common signalling pathways. Mech Ageing Dev. 2019;182:111127. https://pubmed.ncbi.nlm.nih.gov/31401225/

7287

Mar-Aguilar F, Arreola-Triana A, Mata-Cardona D, Gonzalez-Villasana V, Rodríguez-Padilla C, Reséndez-Pérez D. Evidence of transfer of miRNAs from the diet to the blood still inconclusive. PeerJ. 2020;8:e9567. https://pubmed.ncbi.nlm.nih.gov/32995073/

7288

Humphreys KJ, Conlon MA, Young GP, et al. Dietary manipulation of oncogenic microRNA expression in human rectal mucosa: a randomized trial. Cancer Prev Res (Phila). 2014;7(8):786–95. https://pubmed.ncbi.nlm.nih.gov/25092886/

7289

Baier S, Howard K, Cui J, Shu J, Zempleni J. MicroRNAs in chicken eggs are bioavailable in healthy adults and can modulate mRNA expression in peripheral blood mononuclear cells. FASEB J. 2015;29(S1):LB322. https://pubmed.ncbi.nlm.nih.gov/25122645/

7290

Igaz I, Igaz P. Hypothetic interindividual and interspecies relevance of microRNAs released in body fluids. Exp Suppl. 2015;106:281–8. https://pubmed.ncbi.nlm.nih.gov/26608210/

7291

Melnik BC, Schmitz G. MicroRNAs: milk’s epigenetic regulators. Best Pract Res Clin Endocrinol Metab. 2017;31(4):427–42. https://pubmed.ncbi.nlm.nih.gov/29221571/

7292

Benmoussa A, Provost P. Milk microRNAs in health and disease. Compr Rev Food Sci Food Saf. 2019;18(3):703–22. https://pubmed.ncbi.nlm.nih.gov/33336926/

7293

Tooley KL, El-Merhibi A, Cummins AG, et al. Maternal milk, but not formula, regulates the immune response to ß-lactoglobulin in allergy-prone rat pups. J Nutr. 2009;139(11):2145–51. https://pubmed.ncbi.nlm.nih.gov/19759244/

7294

Melnik BC, Stremmel W, Weiskirchen R, John SM, Schmitz G. Exosome-derived microRNAs of human milk and their effects on infant health and development.

1 ... 470 471 472 473 474 475 476 477 478 ... 510
Перейти на страницу: