Шрифт:
Закладка:
7264
Cavalieri D, Rizzetto L, Tocci N, et al. Plant microRNAs as novel immunomodulatory agents. Sci Rep. 2016;6:25761. https://pubmed.ncbi.nlm.nih.gov/27167363/
7265
Hou D, He F, Ma L, et al. The potential atheroprotective role of plant MIR156a as a repressor of monocyte recruitment on inflamed human endothelial cells. J Nutr Biochem. 2018;57:197–205. https://pubmed.ncbi.nlm.nih.gov/29751293/
7266
Ojagbemi A, Okekunle AP, Owolabi M, et al. Dietary intakes of green leafy vegetables and incidence of cardiovascular diseases. Cardiovasc J Afr. 2021;32(4):215–23. https://pubmed.ncbi.nlm.nih.gov/34128951/
7267
Kalarikkal SP, Sundaram GM. Inter-kingdom regulation of human transcriptome by dietary microRNAs: emerging bioactives from edible plants to treat human diseases? Trends Food Sci Technol. 2021;118:723–34. https://www.sciencedirect.com/science/article/abs/pii/S0924224421005999
7268
Ngo SNT, Williams DB. Protective effect of isothiocyanates from cruciferous vegetables on breast cancer: epidemiological and preclinical perspectives. Anticancer Agents Med Chem. 2021;21(11):1413–30. https://pubmed.ncbi.nlm.nih.gov/32972351/
7269
Li D, Yang J, Yang Y, et al. A timely review of cross-kingdom regulation of plant-derived microRNAs. Front Genet. 2021;12:613197. https://pubmed.ncbi.nlm.nih.gov/34012461/
7270
Xiang J, Huang JC, Xu C, et al. [Effect of miRNA from Glycyrrhiza uralensis decoction on gene expression of human immune cells]. Zhongguo Zhong Yao Za Zhi. 2017;42(9):1752–6. https://pubmed.ncbi.nlm.nih.gov/29082701/
7271
Qin Y, Zheng B, Yang G shan, et al. Salvia miltiorrhiza-derived Sal-miR-58 induces autophagy and attenuates inflammation in vascular smooth muscle cells. Mol Ther Nucleic Acids. 2020;21:492–511. https://pubmed.ncbi.nlm.nih.gov/32679544/
7272
Yang GS, Zheng B, Qin Y, et al. Salvia miltiorrhiza-derived miRNAs suppress vascular remodeling through regulating OTUD7B/KLF4/NMHC IIA axis. Theranostics. 2020;10(17):7787–811. https://pubmed.ncbi.nlm.nih.gov/32685020/
7273
Zhou LK, Zhou Z, Jiang XM, et al. Absorbed plant MIR2911 in honeysuckle decoction inhibits SARS-CoV-2 replication and accelerates the negative conversion of infected patients. Cell Discov. 2020;6(1):1–4. https://pubmed.ncbi.nlm.nih.gov/32802404/
7274
Avsar B, Zhao Y, Li W, Lukiw WJ. Atropa belladonna expresses a microRNA (aba-miRNA-9497) highly homologous to Homo sapiens miRNA-378 (hsa-miRNA-378); both miRNAs target the 3’-untranslated region (3’-UTR) of the mRNA encoding the neurologically relevant https://pubmed.ncbi.nlm.nih.gov/31456135/
7275
McNeill EM, Hirschi KD. Roles of regulatory RNAs in nutritional control. Annu Rev Nutr. 2020;40:77–104. https://pubmed.ncbi.nlm.nih.gov/32966184/
7276
Wang L, Sadri M, Giraud D, Zempleni J. RNase H2-dependent polymerase chain reaction and elimination of confounders in sample collection, storage, and analysis strengthen evidence that microRNAs in bovine milk are bioavailable in humans. J Nutr. 2018;148(1):153–9. https://pubmed.ncbi.nlm.nih.gov/29378054/
7277
Chen X, Liu L, Chu Q, et al. Large-scale identification of extracellular plant miRNAs in mammals implicates their dietary intake. PLoS One. 2021;16(9):e0257878. https://pubmed.ncbi.nlm.nih.gov/34587184/
7278
Igaz I, Igaz P. Hypothetic interindividual and interspecies relevance of microRNAs released in body fluids. Exp Suppl. 2015;106:281–8. https://pubmed.ncbi.nlm.nih.gov/26608210/
7279
Witwer KW, Zhang CY. Diet-derived microRNAs: unicorn or silver bullet? Genes Nutr. 2017;12:15. https://pubmed.ncbi.nlm.nih.gov/28694875/
7280
Sundaram GM. Dietary non-coding RNAs from plants: fairy tale or treasure? Noncoding RNA Res. 2019;4(2):63–8. https://pubmed.ncbi.nlm.nih.gov/31193509/
7281
McNeill EM, Hirschi KD. Roles of regulatory RNAs in nutritional control. Annu Rev Nutr. 2020;40:77–104. https://pubmed.ncbi.nlm.nih.gov/32966184/
7282
Link J, Thon C, Schanze D, et al. Food-derived xeno-microRNAs: influence of diet and detectability in gastrointestinal tract – proof-of-principle study. Mol Nutr Food Res. 2019;63(2):e1800076. https://pubmed.ncbi.nlm.nih.gov/30378765/
7283
Quintanilha B, Reis B, Duarte G, Cozzolino S, Rogero M. Nutrimiromics: role of microRNAs and nutrition in modulating inflammation and chronic diseases. Nutrients. 2017;9(11):1168. https://pubmed.ncbi.nlm.nih.gov/29077020/
7284
Mar-Aguilar F, Arreola-Triana A, Mata-Cardona D, Gonzalez-Villasana V, Rodríguez-Padilla C, Reséndez-Pérez D. Evidence of transfer of miRNAs from the diet to the blood still inconclusive. PeerJ. 2020;8:e9567 https://pubmed.ncbi.nlm.nih.gov/32995073/
7285
Wang W, Hang C, Zhang Y, et al. Dietary miR-451 protects erythroid cells from oxidative stress via increasing the activity of Foxo3 pathway. Oncotarget. 2017;8(63):107109–24. https://pubmed.ncbi.nlm.nih.gov/29291015/
7286
Teodori L, Petrignani I, Giuliani A, et al. Inflamm-aging microRNAs may integrate signals from food and gut microbiota by modulating common signalling pathways. Mech Ageing Dev. 2019;182:111127. https://pubmed.ncbi.nlm.nih.gov/31401225/
7287
Mar-Aguilar F, Arreola-Triana A, Mata-Cardona D, Gonzalez-Villasana V, Rodríguez-Padilla C, Reséndez-Pérez D. Evidence of transfer of miRNAs from the diet to the blood still inconclusive. PeerJ. 2020;8:e9567. https://pubmed.ncbi.nlm.nih.gov/32995073/
7288
Humphreys KJ, Conlon MA, Young GP, et al. Dietary manipulation of oncogenic microRNA expression in human rectal mucosa: a randomized trial. Cancer Prev Res (Phila). 2014;7(8):786–95. https://pubmed.ncbi.nlm.nih.gov/25092886/
7289
Baier S, Howard K, Cui J, Shu J, Zempleni J. MicroRNAs in chicken eggs are bioavailable in healthy adults and can modulate mRNA expression in peripheral blood mononuclear cells. FASEB J. 2015;29(S1):LB322. https://pubmed.ncbi.nlm.nih.gov/25122645/
7290
Igaz I, Igaz P. Hypothetic interindividual and interspecies relevance of microRNAs released in body fluids. Exp Suppl. 2015;106:281–8. https://pubmed.ncbi.nlm.nih.gov/26608210/
7291
Melnik BC, Schmitz G. MicroRNAs: milk’s epigenetic regulators. Best Pract Res Clin Endocrinol Metab. 2017;31(4):427–42. https://pubmed.ncbi.nlm.nih.gov/29221571/
7292
Benmoussa A, Provost P. Milk microRNAs in health and disease. Compr Rev Food Sci Food Saf. 2019;18(3):703–22. https://pubmed.ncbi.nlm.nih.gov/33336926/
7293
Tooley KL, El-Merhibi A, Cummins AG, et al. Maternal milk, but not formula, regulates the immune response to ß-lactoglobulin in allergy-prone rat pups. J Nutr. 2009;139(11):2145–51. https://pubmed.ncbi.nlm.nih.gov/19759244/
7294
Melnik BC, Stremmel W, Weiskirchen R, John SM, Schmitz G. Exosome-derived microRNAs of human milk and their effects on infant health and development.