Онлайн
библиотека книг
Книги онлайн » Медицина » Живи долго! Научный подход к долгой молодости и здоровью - Майкл Грегер

Шрифт:

-
+

Закладка:

Сделать
1 ... 466 467 468 469 470 471 472 473 474 ... 510
Перейти на страницу:
class="title6">

7138

Ornish D, Weidner G, Fair WR, et al. Intensive lifestyle changes may affect the progression of prostate cancer. J Urol. 2005;174(3):1065–70. https://pubmed.ncbi.nlm.nih.gov/16094059/

7139

Robinson VL. Rethinking the central dogma: noncoding RNAs are biologically relevant. Urol Oncol. 2009;27(3):304–6. https://pubmed.ncbi.nlm.nih.gov/19414118/

7140

Robinson VL. Rethinking the central dogma: noncoding RNAs are biologically relevant. Urol Oncol. 2009;27(3):304–6. https://pubmed.ncbi.nlm.nih.gov/19414118/

7141

McNeill EM, Hirschi KD. Roles of regulatory RNAs in nutritional control. Annu Rev Nutr. 2020;40:77–104. https://pubmed.ncbi.nlm.nih.gov/32966184/

7142

Robinson VL. Rethinking the central dogma: noncoding RNAs are biologically relevant. Urol Oncol. 2009;27(3):304–6. https://pubmed.ncbi.nlm.nih.gov/19414118/

7143

Ruvkun G. Glimpses of a tiny RNA world. Science. 2001;294(5543):797–9. https://pubmed.ncbi.nlm.nih.gov/11679654/

7144

Roberts BM, Blewitt G, Dailey C, et al. Search for domain wall dark matter with atomic clocks on board global positioning system satellites. Nat Commun. 2017;8(1):1195. https://pubmed.ncbi.nlm.nih.gov/29084959/

7145

Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853–8. https://pubmed.ncbi.nlm.nih.gov/11679670/

7146

Kalarikkal SP, Sundaram GM. Inter-kingdom regulation of human transcriptome by dietary microRNAs: emerging bioactives from edible plants to treat human diseases? Trends Food Sci Technol. 2021;118:723–34. https://www.sciencedirect.com/science/article/abs/pii/S0924224421005999

7147

Robinson VL. Rethinking the central dogma: noncoding RNAs are biologically relevant. Urol Oncol. 2009;27(3):304–6. https://pubmed.ncbi.nlm.nih.gov/19414118/

7148

Piovesan A, Caracausi M, Antonaros F, Pelleri MC, Vitale L. GeneBase 1.1: a tool to summarize data from NCBI gene datasets and its application to an update of human gene statistics. Database (Oxford). 2016;2016:baw153. https://pubmed.ncbi.nlm.nih.gov/28025344/

7149

Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54. https://pubmed.ncbi.nlm.nih.gov/8252621/

7150

Díez-Sainz E, Lorente-Cebrián S, Aranaz P, Riezu-Boj JI, Martínez JA, Milagro FI. Potential mechanisms linking food-derived microRNAs, gut microbiota and intestinal barrier functions in the context of nutrition and human health. Front Nutr. 2021;8:586564. https://pubmed.ncbi.nlm.nih.gov/33768107/

7151

Tarallo S, Pardini B, Mancuso G, et al. MicroRNA expression in relation to different dietary habits: a comparison in stool and plasma samples. Mutagenesis. 2014;29(5):385–91. https://pubmed.ncbi.nlm.nih.gov/25150024/

7152

Majidinia M, Karimian A, Alemi F, Yousefi B, Safa A. Targeting miRNAs by polyphenols: novel therapeutic strategy for aging. Biochem Pharmacol. 2020;173:113688. https://pubmed.ncbi.nlm.nih.gov/31682793/

7153

McNeill EM, Hirschi KD. Roles of regulatory RNAs in nutritional control. Annu Rev Nutr. 2020;40:77–104. https://pubmed.ncbi.nlm.nih.gov/32966184/

7154

Cong L, Zhao Y, Pogue AI, Lukiw WJ. Role of microRNA (miRNA) and viroids in lethal diseases of plants and animals. Potential contribution to human neurodegenerative disorders. Biochemistry Moscow. 2018;83(9):1018–29. https://pubmed.ncbi.nlm.nih.gov/30472940/

7155

McNeill EM, Hirschi KD. Roles of regulatory RNAs in nutritional control. Annu Rev Nutr. 2020;40:77–104. https://pubmed.ncbi.nlm.nih.gov/32966184/

7156

Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–41. https://pubmed.ncbi.nlm.nih.gov/20847327/

7157

Alshehri B. Plant-derived xenomiRs and cancer: cross-kingdom gene regulation. Saudi J Biol Sci. 2021;28(4):2408–22. https://pubmed.ncbi.nlm.nih.gov/33911956/

7158

Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9. https://pubmed.ncbi.nlm.nih.gov/17486113/

7159

Cammarata G, Duro G, Chiara TD, Curto AL, Taverna S, Candore G. Circulating miRNAs in successful and unsuccessful aging. A mini-review. Curr Pharm Des. 2019;25(39):4150–3. https://pubmed.ncbi.nlm.nih.gov/31742494/

7160

Wang L, Sadri M, Giraud D, Zempleni J. RNase H2-dependent polymerase chain reaction and elimination of confounders in sample collection, storage, and analysis strengthen evidence that microRNAs in bovine milk are bioavailable in humans. J Nutr. 2018;148(1):153–9. https://pubmed.ncbi.nlm.nih.gov/29378054/

7161

Bernstein E, Kim SY, Carmell MA, et al. Dicer is essential for mouse development. Nat Genet. 2003;35(3):215–7. https://pubmed.ncbi.nlm.nih.gov/14528307/

7162

Kalarikkal SP, Sundaram GM. Inter-kingdom regulation of human transcriptome by dietary microRNAs: emerging bioactives from edible plants to treat human diseases? Trends Food Sci Technol. 2021;118:723–34. https://www.sciencedirect.com/science/article/abs/pii/S0924224421005999

7163

Cammarata G, Duro G, Chiara TD, Curto AL, Taverna S, Candore G. Circulating miRNAs in successful and unsuccessful aging. A mini-review. Curr Pharm Des. 2019;25(39):4150–3. https://pubmed.ncbi.nlm.nih.gov/31742494/

7164

Majidinia M, Mir SM, Mirza-Aghazadeh-Attari M, et al. MicroRNAs, DNA damage response and ageing. Biogerontology. 2020;21(3):275–91. https://pubmed.ncbi.nlm.nih.gov/32067137/

7165

Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54. https://pubmed.ncbi.nlm.nih.gov/8252621/

7166

Boehm M, Slack F. A developmental timing microRNA and its target regulate life span in C. elegans. Science. 2005;310(5756):1954–7. https://pubmed.ncbi.nlm.nih.gov/16373574/

7167

Morris BJ, Willcox DC, Donlon TA, Willcox BJ. BFOXO3: a major gene for human longevity – a mini-review. Gerontology. 2015;61(6):515–25. https://pubmed.ncbi.nlm.nih.gov/25832544/

7168

Calissi G, Lam EWF, Link W. Therapeutic strategies targeting FOXO transcription factors. Nat Rev Drug Discov. 2021;20(1):21–38. https://pubmed.ncbi.nlm.nih.gov/33173189/

7169

Pincus Z, Smith-Vikos T, Slack FJ. MicroRNA predictors of longevity in Caenorhabditis elegans. PLoS Genet. 2011;7(9):e1002306. https://pubmed.ncbi.nlm.nih.gov/21980307/

7170

Green CD, Huang Y, Dou X, Yang L, Liu Y, Han JDJ. Impact of dietary interventions on noncoding RNA networks and mRNAs encoding chromatin-related factors. Cell Rep. 2017;18(12):2957–68. https://pubmed.ncbi.nlm.nih.gov/28329687/

7171

Du WW, Yang W, Fang L, et al. miR-17 extends mouse lifespan by inhibiting senescence signaling mediated by MKP7. Cell Death Dis. 2014;5(7):e1355. https://pubmed.ncbi.nlm.nih.gov/25077541/

7172

Cammarata G, Duro

1 ... 466 467 468 469 470 471 472 473 474 ... 510
Перейти на страницу: