Шрифт:
Закладка:
7138
Ornish D, Weidner G, Fair WR, et al. Intensive lifestyle changes may affect the progression of prostate cancer. J Urol. 2005;174(3):1065–70. https://pubmed.ncbi.nlm.nih.gov/16094059/
7139
Robinson VL. Rethinking the central dogma: noncoding RNAs are biologically relevant. Urol Oncol. 2009;27(3):304–6. https://pubmed.ncbi.nlm.nih.gov/19414118/
7140
Robinson VL. Rethinking the central dogma: noncoding RNAs are biologically relevant. Urol Oncol. 2009;27(3):304–6. https://pubmed.ncbi.nlm.nih.gov/19414118/
7141
McNeill EM, Hirschi KD. Roles of regulatory RNAs in nutritional control. Annu Rev Nutr. 2020;40:77–104. https://pubmed.ncbi.nlm.nih.gov/32966184/
7142
Robinson VL. Rethinking the central dogma: noncoding RNAs are biologically relevant. Urol Oncol. 2009;27(3):304–6. https://pubmed.ncbi.nlm.nih.gov/19414118/
7143
Ruvkun G. Glimpses of a tiny RNA world. Science. 2001;294(5543):797–9. https://pubmed.ncbi.nlm.nih.gov/11679654/
7144
Roberts BM, Blewitt G, Dailey C, et al. Search for domain wall dark matter with atomic clocks on board global positioning system satellites. Nat Commun. 2017;8(1):1195. https://pubmed.ncbi.nlm.nih.gov/29084959/
7145
Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853–8. https://pubmed.ncbi.nlm.nih.gov/11679670/
7146
Kalarikkal SP, Sundaram GM. Inter-kingdom regulation of human transcriptome by dietary microRNAs: emerging bioactives from edible plants to treat human diseases? Trends Food Sci Technol. 2021;118:723–34. https://www.sciencedirect.com/science/article/abs/pii/S0924224421005999
7147
Robinson VL. Rethinking the central dogma: noncoding RNAs are biologically relevant. Urol Oncol. 2009;27(3):304–6. https://pubmed.ncbi.nlm.nih.gov/19414118/
7148
Piovesan A, Caracausi M, Antonaros F, Pelleri MC, Vitale L. GeneBase 1.1: a tool to summarize data from NCBI gene datasets and its application to an update of human gene statistics. Database (Oxford). 2016;2016:baw153. https://pubmed.ncbi.nlm.nih.gov/28025344/
7149
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54. https://pubmed.ncbi.nlm.nih.gov/8252621/
7150
Díez-Sainz E, Lorente-Cebrián S, Aranaz P, Riezu-Boj JI, Martínez JA, Milagro FI. Potential mechanisms linking food-derived microRNAs, gut microbiota and intestinal barrier functions in the context of nutrition and human health. Front Nutr. 2021;8:586564. https://pubmed.ncbi.nlm.nih.gov/33768107/
7151
Tarallo S, Pardini B, Mancuso G, et al. MicroRNA expression in relation to different dietary habits: a comparison in stool and plasma samples. Mutagenesis. 2014;29(5):385–91. https://pubmed.ncbi.nlm.nih.gov/25150024/
7152
Majidinia M, Karimian A, Alemi F, Yousefi B, Safa A. Targeting miRNAs by polyphenols: novel therapeutic strategy for aging. Biochem Pharmacol. 2020;173:113688. https://pubmed.ncbi.nlm.nih.gov/31682793/
7153
McNeill EM, Hirschi KD. Roles of regulatory RNAs in nutritional control. Annu Rev Nutr. 2020;40:77–104. https://pubmed.ncbi.nlm.nih.gov/32966184/
7154
Cong L, Zhao Y, Pogue AI, Lukiw WJ. Role of microRNA (miRNA) and viroids in lethal diseases of plants and animals. Potential contribution to human neurodegenerative disorders. Biochemistry Moscow. 2018;83(9):1018–29. https://pubmed.ncbi.nlm.nih.gov/30472940/
7155
McNeill EM, Hirschi KD. Roles of regulatory RNAs in nutritional control. Annu Rev Nutr. 2020;40:77–104. https://pubmed.ncbi.nlm.nih.gov/32966184/
7156
Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–41. https://pubmed.ncbi.nlm.nih.gov/20847327/
7157
Alshehri B. Plant-derived xenomiRs and cancer: cross-kingdom gene regulation. Saudi J Biol Sci. 2021;28(4):2408–22. https://pubmed.ncbi.nlm.nih.gov/33911956/
7158
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9. https://pubmed.ncbi.nlm.nih.gov/17486113/
7159
Cammarata G, Duro G, Chiara TD, Curto AL, Taverna S, Candore G. Circulating miRNAs in successful and unsuccessful aging. A mini-review. Curr Pharm Des. 2019;25(39):4150–3. https://pubmed.ncbi.nlm.nih.gov/31742494/
7160
Wang L, Sadri M, Giraud D, Zempleni J. RNase H2-dependent polymerase chain reaction and elimination of confounders in sample collection, storage, and analysis strengthen evidence that microRNAs in bovine milk are bioavailable in humans. J Nutr. 2018;148(1):153–9. https://pubmed.ncbi.nlm.nih.gov/29378054/
7161
Bernstein E, Kim SY, Carmell MA, et al. Dicer is essential for mouse development. Nat Genet. 2003;35(3):215–7. https://pubmed.ncbi.nlm.nih.gov/14528307/
7162
Kalarikkal SP, Sundaram GM. Inter-kingdom regulation of human transcriptome by dietary microRNAs: emerging bioactives from edible plants to treat human diseases? Trends Food Sci Technol. 2021;118:723–34. https://www.sciencedirect.com/science/article/abs/pii/S0924224421005999
7163
Cammarata G, Duro G, Chiara TD, Curto AL, Taverna S, Candore G. Circulating miRNAs in successful and unsuccessful aging. A mini-review. Curr Pharm Des. 2019;25(39):4150–3. https://pubmed.ncbi.nlm.nih.gov/31742494/
7164
Majidinia M, Mir SM, Mirza-Aghazadeh-Attari M, et al. MicroRNAs, DNA damage response and ageing. Biogerontology. 2020;21(3):275–91. https://pubmed.ncbi.nlm.nih.gov/32067137/
7165
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54. https://pubmed.ncbi.nlm.nih.gov/8252621/
7166
Boehm M, Slack F. A developmental timing microRNA and its target regulate life span in C. elegans. Science. 2005;310(5756):1954–7. https://pubmed.ncbi.nlm.nih.gov/16373574/
7167
Morris BJ, Willcox DC, Donlon TA, Willcox BJ. BFOXO3: a major gene for human longevity – a mini-review. Gerontology. 2015;61(6):515–25. https://pubmed.ncbi.nlm.nih.gov/25832544/
7168
Calissi G, Lam EWF, Link W. Therapeutic strategies targeting FOXO transcription factors. Nat Rev Drug Discov. 2021;20(1):21–38. https://pubmed.ncbi.nlm.nih.gov/33173189/
7169
Pincus Z, Smith-Vikos T, Slack FJ. MicroRNA predictors of longevity in Caenorhabditis elegans. PLoS Genet. 2011;7(9):e1002306. https://pubmed.ncbi.nlm.nih.gov/21980307/
7170
Green CD, Huang Y, Dou X, Yang L, Liu Y, Han JDJ. Impact of dietary interventions on noncoding RNA networks and mRNAs encoding chromatin-related factors. Cell Rep. 2017;18(12):2957–68. https://pubmed.ncbi.nlm.nih.gov/28329687/
7171
Du WW, Yang W, Fang L, et al. miR-17 extends mouse lifespan by inhibiting senescence signaling mediated by MKP7. Cell Death Dis. 2014;5(7):e1355. https://pubmed.ncbi.nlm.nih.gov/25077541/
7172
Cammarata G, Duro