Онлайн
библиотека книг
Книги онлайн » Медицина » Живи долго! Научный подход к долгой молодости и здоровью - Майкл Грегер

Шрифт:

-
+

Закладка:

Сделать
1 ... 468 469 470 471 472 473 474 475 476 ... 510
Перейти на страницу:
on common microRNAs. J Nutr Biochem. 2015;26(10):1095–101. https://pubmed.ncbi.nlm.nih.gov/26092372/

7201

Shao D, Lian Z, Di Y, et al. Dietary compounds have potential in controlling atherosclerosis by modulating macrophage cholesterol metabolism and inflammation via miRNA. NPJ Sci Food. 2018;2:13. https://pubmed.ncbi.nlm.nih.gov/31304263/

7202

Koolivand M, Ansari M, Piroozian F, Moein S, MalekZadeh K. Alleviating the progression of acute myeloid leukemia (AML) by sulforaphane through controlling miR-155 levels. Mol Biol Rep. 2018;45(6):2491–9. https://pubmed.ncbi.nlm.nih.gov/30350234/

7203

Singh S, Raza W, Parveen S, Meena A, Luqman S. Flavonoid display ability to target microRNAs in cancer pathogenesis. Biochem Pharmacol. 2021;189:114409. https://pubmed.ncbi.nlm.nih.gov/33428895/

7204

Guo X, Cai Q, Bao P, et al. Long-term soy consumption and tumor tissue microRNA and gene expression in triple negative breast cancer. Cancer. 2016;122(16):2544–51. https://pubmed.ncbi.nlm.nih.gov/27183356/

7205

Boutas I, Kontogeorgi A, Dimitrakakis C, Kalantaridou SN. Soy isoflavones and breast cancer risk: a meta-analysis. In Vivo. 2022;36(2):556–62. https://pubmed.ncbi.nlm.nih.gov/35241506/

7206

Qiu S, Jiang C. Soy and isoflavones consumption and breast cancer survival and recurrence: a systematic review and meta-analysis. Eur J Nutr. 2019;58(8):3079–90. https://pubmed.ncbi.nlm.nih.gov/30382332/

7207

Tarallo S, Ferrero G, De Filippis F, et al. Stool microRNA profiles reflect different dietary and gut microbiome patterns in healthy individuals. Gut. 2022;71(7):1302–14. https://pubmed.ncbi.nlm.nih.gov/34315772/

7208

Dinu M, Abbate R, Gensini GF, Casini A, Sofi F. Vegetarian, vegan diets and multiple health outcomes: a systematic review with meta-analysis of observational studies. Crit Rev Food Sci Nutr. 2017;57(17):3640–9. https://pubmed.ncbi.nlm.nih.gov/26853923/

7209

Humphreys KJ, Conlon MA, Young GP, et al. Dietary manipulation of oncogenic microRNA expression in human rectal mucosa: a randomized trial. Cancer Prev Res (Phila). 2014;7(8):786–95. https://pubmed.ncbi.nlm.nih.gov/25092886/

7210

Papaioannou MD, Koufaris C, Gooderham NJ. The cooked meat-derived mammary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) elicits estrogenic-like microRNA responses in breast cancer cells. Toxicol Lett. 2014;229(1):9–16. https://pubmed.ncbi.nlm.nih.gov/24877718/

7211

Yang WM, Jeong HJ, Park SY, Lee W. Induction of miR-29a by saturated fatty acids impairs insulin signaling and glucose uptake through translational repression of IRS-1 in myocytes. FEBS Lett. 2014;588(13):2170–6. https://pubmed.ncbi.nlm.nih.gov/24844433/

7212

Dinu M, Abbate R, Gensini GF, Casini A, Sofi F. Vegetarian, vegan diets and multiple health outcomes: a systematic review with meta-analysis of observational studies. Crit Rev Food Sci Nutr. 2017;57(17):3640–9. https://pubmed.ncbi.nlm.nih.gov/26853923/

7213

Sinha R, Rothman N, Brown ED, et al. High concentrations of the carcinogen 2-amino-1-methyl-6-phynylimidazo-[4,5-b]pyridine (PhIP) occur in chicken but are dependent on the cooking method. Cancer Res. 1995;55(20):4516–9. https://pubmed.ncbi.nlm.nih.gov/7553619/

7214

Liu T, Gatto NM, Chen Z, et al. Vegetarian diets, circulating miRNA expression and healthspan in subjects living in the Blue Zone. Precis Clin Med. 2020;3(4):245–59. https://pubmed.ncbi.nlm.nih.gov/33391847/

7215

Von Linné, C. Salvius L. Caroli Linnæi… systema naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus differentiis, synonymis, locis. Impensis Direct. Laurentii Salvii; 1758. https://www.biodiversitylibrary.org/bibliography/542

7216

Haeckel E. Generelle morphologie der organismen. Allgemeine grundzüge der organischen formen-wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte descendenztheorie. G. Reimer; 1866. https://www.biodiversitylibrary.org/bibliography/3953

7217

Ruggiero MA, Gordon DP, Orrell TM, et al. A higher level classification of all living organisms. PLoS One. 2015;10(4):e0119248. https://pubmed.ncbi.nlm.nih.gov/25923521/

7218

Dalmasso G, Nguyen HTT, Yan Y, et al. Microbiota modulate host gene expression via microRNAs. PLoS One. 2011;6(4):e19293. https://pubmed.ncbi.nlm.nih.gov/21559394/

7219

Choi JW, Kim SC, Hong SH, Lee HJ. Secretable small RNAs via outer membrane vesicles in periodontal pathogens. J Dent Res. 2017;96(4):458–66. https://pubmed.ncbi.nlm.nih.gov/28068479/

7220

Liu S, da Cunha AP, Rezende RM, et al. The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe. 2016;19(1):32–43. https://pubmed.ncbi.nlm.nih.gov/26764595/

7221

Munroe R. Family reunion. xkcd. https://xkcd.com/2608/. Accessed October 17, 2022.; https://xkcd.com/2608/

7222

Wang DY, Kumar S, Hedges SB. Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc Biol Sci. 1999;266(1415):163–71. https://pubmed.ncbi.nlm.nih.gov/10097391/

7223

Zhao Y, Cong L, Lukiw WJ. Plant and animal microRNAs (miRNAs) and their potential for inter-kingdom communication. Cell Mol Neurobiol. 2018;38(1):133–40. https://pubmed.ncbi.nlm.nih.gov/28879580/

7224

Zhang T, Jin Y, Zhao JH, et al. Host-induced gene silencing of the target gene in fungal cells confers effective resistance to the cotton wilt disease pathogen Verticillium dahliae. Mol Plant. 2016;9(6):939–42. https://pubmed.ncbi.nlm.nih.gov/26925819/

7225

Cong L, Zhao Y, Pogue AI, Lukiw WJ. Role of microRNA (miRNA) and viroids in lethal diseases of plants and animals. Potential contribution to human neurodegenerative disorders. Biochemistry Moscow. 2018;83(9):1018–29. https://pubmed.ncbi.nlm.nih.gov/30472940/

7226

McNeill EM, Hirschi KD. Roles of regulatory RNAs in nutritional control. Annu Rev Nutr. 2020;40:77–104. https://pubmed.ncbi.nlm.nih.gov/32966184/

7227

Jia M, He J, Bai W, et al. Cross-kingdom regulation by dietary plant miRNAs: an evidence-based review with recent updates. Food Funct. 2021;12(20):9549–62. https://pubmed.ncbi.nlm.nih.gov/34664582/

7228

Li Z, Xu R, Li N. MicroRNAs from plants to animals, do they define a new messenger for communication? Nutr Metab (Lond). 2018;15:68. https://pubmed.ncbi.nlm.nih.gov/30302122/

7229

Cong L, Zhao Y, Pogue AI, Lukiw WJ. Role of microRNA (miRNA) and viroids in lethal diseases of plants and animals. Potential contribution to human neurodegenerative disorders. Biochemistry Moscow. 2018;83(9):1018–29. https://pubmed.ncbi.nlm.nih.gov/30472940/

7230

Díez-Sainz E, Lorente-Cebrián S, Aranaz P, Riezu-Boj JI, Martínez JA, Milagro FI. Potential mechanisms linking food-derived microRNAs, gut microbiota and intestinal barrier functions in the context of nutrition and human health. Front Nutr. 2021;8:586564. https://pubmed.ncbi.nlm.nih.gov/33768107/

7231

Zhao JH, Zhang T, Liu QY,

1 ... 468 469 470 471 472 473 474 475 476 ... 510
Перейти на страницу: