Онлайн
библиотека книг
Книги онлайн » Медицина » Живи долго! Научный подход к долгой молодости и здоровью - Майкл Грегер

Шрифт:

-
+

Закладка:

Сделать
1 ... 469 470 471 472 473 474 475 476 477 ... 510
Перейти на страницу:
Guo HS. Trans-kingdom RNAs and their fates in recipient cells: advances, utilization, and perspectives. Plant Commun. 2021;2(2):100167. https://pubmed.ncbi.nlm.nih.gov/33898979/

7232

García-Segura L, Pérez-Andrade M, Miranda-Ríos J. The emerging role of microRNAs in the regulation of gene expression by nutrients. J Nutrigenet Nutrigenomics. 2013;6(1):16–31. https://pubmed.ncbi.nlm.nih.gov/23445777/

7233

Campbell K. The doubts about dietary RNA. Nature. 2020;582:s10–1. https://www.nature.com/articles/d41586-020-01767-x

7234

Zhu WJ, Liu Y, Cao YN, Peng LX, Yan ZY, Zhao G. Insights into health-promoting effects of plant microRNAs: a review. J Agric Food Chem. 2021;69(48):14372–86. https://pubmed.ncbi.nlm.nih.gov/34813309/

7235

Li M, Chen T, He JJ, et al. Plant MIR167e-5p inhibits enterocyte proliferation by targeting ß-catenin. Cells. 2019;8(11):1385. https://pubmed.ncbi.nlm.nih.gov/31689969/

7236

del Pozo-Acebo L, López de las Hazas M, Margollés A, Dávalos A, García-Ruiz A. Eating microRNAs: pharmacological opportunities for cross-kingdom regulation and implications in host gene and gut microbiota modulation. British J Pharmacology. 2021;178(11):2218–45. https://pubmed.ncbi.nlm.nih.gov/33644849/

7237

Dávalos A, Pinilla L, López de Las Hazas MC, et al. Dietary microRNAs and cancer: a new therapeutic approach? Semin Cancer Biol. 2021;73:19–29. https://pubmed.ncbi.nlm.nih.gov/33086083/

7238

Chin AR, Fong MY, Somlo G, et al. Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res. 2016;26(2):217–28. https://pubmed.ncbi.nlm.nih.gov/26794868/

7239

Cavallini A, Minervini F, Garbetta A, et al. High degradation and no bioavailability of artichoke miRNAs assessed using an in vitro digestion/Caco-2 cell model. Nutr Res. 2018;60:68–76. https://pubmed.ncbi.nlm.nih.gov/30527261/

7240

Philip A, Ferro VA, Tate RJ. Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process. Mol Nutr Food Res. 2015;59(10):1962–72. https://pubmed.ncbi.nlm.nih.gov/26147655/

7241

Link J, Thon C, Schanze D, et al. Food-derived xeno-microRNAs: influence of diet and detectability in gastrointestinal tract – proof-of-principle study. Mol Nutr Food Res. 2019;63(2):e1800076. https://pubmed.ncbi.nlm.nih.gov/30378765/

7242

Snow JW, Hale AE, Isaacs SK, Baggish AL, Chan SY. Ineffective delivery of diet-derived microRNAs to recipient animal organisms. RNA Biol. 2013;10(7):1107–16. https://pubmed.ncbi.nlm.nih.gov/23669076/

7243

Link J, Thon C, Schanze D, et al. Food-derived xeno-microRNAs: influence of diet and detectability in gastrointestinal tract – proof-of-principle study. Mol Nutr Food Res. 2019;63(2):e1800076. https://pubmed.ncbi.nlm.nih.gov/30378765/

7244

Kalarikkal SP, Sundaram GM. Inter-kingdom regulation of human transcriptome by dietary microRNAs: emerging bioactives from edible plants to treat human diseases? Trends Food Sci Technol. 2021;118:723–34. https://www.sciencedirect.com/science/article/abs/pii/S0924224421005999

7245

Zhang L, Hou D, Chen X, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 2012;22(1):107–26. https://pubmed.ncbi.nlm.nih.gov/21931358/

7246

Chen Q, Zhang F, Dong L, et al. SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs. Cell Res. 2021;31(3):247–58. https://pubmed.ncbi.nlm.nih.gov/32801357/

7247

Kalarikkal SP, Sundaram GM. Inter-kingdom regulation of human transcriptome by dietary microRNAs: emerging bioactives from edible plants to treat human diseases? Trends Food Sci Technol. 2021;118:723–34. https://www.sciencedirect.com/science/article/abs/pii/S0924224421005999

7248

Wang Q, Zhuang X, Mu J, et al. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat Commun. 2013;4:1867. https://pubmed.ncbi.nlm.nih.gov/23695661/

7249

Kalarikkal SP, Sundaram GM. Inter-kingdom regulation of human transcriptome by dietary microRNAs: emerging bioactives from edible plants to treat human diseases? Trends Food Sci Technol. 2021;118:723–34. https://www.sciencedirect.com/science/article/abs/pii/S0924224421005999

7250

Zhu WJ, Liu Y, Cao YN, Peng LX, Yan ZY, Zhao G. Insights into health-promoting effects of plant microRNAs: a review. J Agric Food Chem. 2021;69(48):14372–86. https://pubmed.ncbi.nlm.nih.gov/34813309/

7251

Yu B, Yang Z, Li J, et al. Methylation as a crucial step in plant microRNA biogenesis. Science. 2005;307(5711):932–5. https://pubmed.ncbi.nlm.nih.gov/15705854/

7252

Link J, Thon C, Schanze D, et al. Food-derived xeno-microRNAs: influence of diet and detectability in gastrointestinal tract – proof-of-principle study. Mol Nutr Food Res. 2019;63(2):e1800076. https://pubmed.ncbi.nlm.nih.gov/30378765/

7253

Liang G, Zhu Y, Sun B, et al. Assessing the survival of exogenous plant microRNA in mice. Food Sci Nutr. 2014;2(4):380–8. https://pubmed.ncbi.nlm.nih.gov/25473495/

7254

Luo Y, Wang P, Wang X, et al. Detection of dietetically absorbed maize-derived microRNAs in pigs. Sci Rep. 2017;7(1):645. https://pubmed.ncbi.nlm.nih.gov/28381865/

7255

Chen Q, Zhang F, Dong L, et al. SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs. Cell Res. 2021;31(3):247–58. https://pubmed.ncbi.nlm.nih.gov/32801357/

7256

Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341–5. https://pubmed.ncbi.nlm.nih.gov/21423189/

7257

Liang G, Zhu Y, Sun B, et al. Assessing the survival of exogenous plant microRNA in mice. Food Sci Nutr. 2014;2(4):380–8. https://pubmed.ncbi.nlm.nih.gov/25473495/

7258

Zhang L, Hou D, Chen X, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 2012;22(1):107–26. https://pubmed.ncbi.nlm.nih.gov/21931358/

7259

Chen X, Liu L, Chu Q, et al. Large-scale identification of extracellular plant miRNAs in mammals implicates their dietary intake. PLoS One. 2021;16(9):e0257878. https://pubmed.ncbi.nlm.nih.gov/34587184/

7260

Li J, Zhang Y, Li D, et al. Small non-coding RNAs transfer through mammalian placenta and directly regulate fetal gene expression. Protein Cell. 2015;6(6):391–6. https://pubmed.ncbi.nlm.nih.gov/25963995/

7261

Xiao J, Feng S, Wang X, et al. Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables. PeerJ. 2018;6:e5186. https://pubmed.ncbi.nlm.nih.gov/30083436/

7262

Ju S, Mu J, Dokland T, et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther. 2013;21(7):1345–57. https://pubmed.ncbi.nlm.nih.gov/23752315/

7263

Mu J,

1 ... 469 470 471 472 473 474 475 476 477 ... 510
Перейти на страницу: