Шрифт:
Закладка:
7232
García-Segura L, Pérez-Andrade M, Miranda-Ríos J. The emerging role of microRNAs in the regulation of gene expression by nutrients. J Nutrigenet Nutrigenomics. 2013;6(1):16–31. https://pubmed.ncbi.nlm.nih.gov/23445777/
7233
Campbell K. The doubts about dietary RNA. Nature. 2020;582:s10–1. https://www.nature.com/articles/d41586-020-01767-x
7234
Zhu WJ, Liu Y, Cao YN, Peng LX, Yan ZY, Zhao G. Insights into health-promoting effects of plant microRNAs: a review. J Agric Food Chem. 2021;69(48):14372–86. https://pubmed.ncbi.nlm.nih.gov/34813309/
7235
Li M, Chen T, He JJ, et al. Plant MIR167e-5p inhibits enterocyte proliferation by targeting ß-catenin. Cells. 2019;8(11):1385. https://pubmed.ncbi.nlm.nih.gov/31689969/
7236
del Pozo-Acebo L, López de las Hazas M, Margollés A, Dávalos A, García-Ruiz A. Eating microRNAs: pharmacological opportunities for cross-kingdom regulation and implications in host gene and gut microbiota modulation. British J Pharmacology. 2021;178(11):2218–45. https://pubmed.ncbi.nlm.nih.gov/33644849/
7237
Dávalos A, Pinilla L, López de Las Hazas MC, et al. Dietary microRNAs and cancer: a new therapeutic approach? Semin Cancer Biol. 2021;73:19–29. https://pubmed.ncbi.nlm.nih.gov/33086083/
7238
Chin AR, Fong MY, Somlo G, et al. Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res. 2016;26(2):217–28. https://pubmed.ncbi.nlm.nih.gov/26794868/
7239
Cavallini A, Minervini F, Garbetta A, et al. High degradation and no bioavailability of artichoke miRNAs assessed using an in vitro digestion/Caco-2 cell model. Nutr Res. 2018;60:68–76. https://pubmed.ncbi.nlm.nih.gov/30527261/
7240
Philip A, Ferro VA, Tate RJ. Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process. Mol Nutr Food Res. 2015;59(10):1962–72. https://pubmed.ncbi.nlm.nih.gov/26147655/
7241
Link J, Thon C, Schanze D, et al. Food-derived xeno-microRNAs: influence of diet and detectability in gastrointestinal tract – proof-of-principle study. Mol Nutr Food Res. 2019;63(2):e1800076. https://pubmed.ncbi.nlm.nih.gov/30378765/
7242
Snow JW, Hale AE, Isaacs SK, Baggish AL, Chan SY. Ineffective delivery of diet-derived microRNAs to recipient animal organisms. RNA Biol. 2013;10(7):1107–16. https://pubmed.ncbi.nlm.nih.gov/23669076/
7243
Link J, Thon C, Schanze D, et al. Food-derived xeno-microRNAs: influence of diet and detectability in gastrointestinal tract – proof-of-principle study. Mol Nutr Food Res. 2019;63(2):e1800076. https://pubmed.ncbi.nlm.nih.gov/30378765/
7244
Kalarikkal SP, Sundaram GM. Inter-kingdom regulation of human transcriptome by dietary microRNAs: emerging bioactives from edible plants to treat human diseases? Trends Food Sci Technol. 2021;118:723–34. https://www.sciencedirect.com/science/article/abs/pii/S0924224421005999
7245
Zhang L, Hou D, Chen X, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 2012;22(1):107–26. https://pubmed.ncbi.nlm.nih.gov/21931358/
7246
Chen Q, Zhang F, Dong L, et al. SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs. Cell Res. 2021;31(3):247–58. https://pubmed.ncbi.nlm.nih.gov/32801357/
7247
Kalarikkal SP, Sundaram GM. Inter-kingdom regulation of human transcriptome by dietary microRNAs: emerging bioactives from edible plants to treat human diseases? Trends Food Sci Technol. 2021;118:723–34. https://www.sciencedirect.com/science/article/abs/pii/S0924224421005999
7248
Wang Q, Zhuang X, Mu J, et al. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat Commun. 2013;4:1867. https://pubmed.ncbi.nlm.nih.gov/23695661/
7249
Kalarikkal SP, Sundaram GM. Inter-kingdom regulation of human transcriptome by dietary microRNAs: emerging bioactives from edible plants to treat human diseases? Trends Food Sci Technol. 2021;118:723–34. https://www.sciencedirect.com/science/article/abs/pii/S0924224421005999
7250
Zhu WJ, Liu Y, Cao YN, Peng LX, Yan ZY, Zhao G. Insights into health-promoting effects of plant microRNAs: a review. J Agric Food Chem. 2021;69(48):14372–86. https://pubmed.ncbi.nlm.nih.gov/34813309/
7251
Yu B, Yang Z, Li J, et al. Methylation as a crucial step in plant microRNA biogenesis. Science. 2005;307(5711):932–5. https://pubmed.ncbi.nlm.nih.gov/15705854/
7252
Link J, Thon C, Schanze D, et al. Food-derived xeno-microRNAs: influence of diet and detectability in gastrointestinal tract – proof-of-principle study. Mol Nutr Food Res. 2019;63(2):e1800076. https://pubmed.ncbi.nlm.nih.gov/30378765/
7253
Liang G, Zhu Y, Sun B, et al. Assessing the survival of exogenous plant microRNA in mice. Food Sci Nutr. 2014;2(4):380–8. https://pubmed.ncbi.nlm.nih.gov/25473495/
7254
Luo Y, Wang P, Wang X, et al. Detection of dietetically absorbed maize-derived microRNAs in pigs. Sci Rep. 2017;7(1):645. https://pubmed.ncbi.nlm.nih.gov/28381865/
7255
Chen Q, Zhang F, Dong L, et al. SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs. Cell Res. 2021;31(3):247–58. https://pubmed.ncbi.nlm.nih.gov/32801357/
7256
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341–5. https://pubmed.ncbi.nlm.nih.gov/21423189/
7257
Liang G, Zhu Y, Sun B, et al. Assessing the survival of exogenous plant microRNA in mice. Food Sci Nutr. 2014;2(4):380–8. https://pubmed.ncbi.nlm.nih.gov/25473495/
7258
Zhang L, Hou D, Chen X, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 2012;22(1):107–26. https://pubmed.ncbi.nlm.nih.gov/21931358/
7259
Chen X, Liu L, Chu Q, et al. Large-scale identification of extracellular plant miRNAs in mammals implicates their dietary intake. PLoS One. 2021;16(9):e0257878. https://pubmed.ncbi.nlm.nih.gov/34587184/
7260
Li J, Zhang Y, Li D, et al. Small non-coding RNAs transfer through mammalian placenta and directly regulate fetal gene expression. Protein Cell. 2015;6(6):391–6. https://pubmed.ncbi.nlm.nih.gov/25963995/
7261
Xiao J, Feng S, Wang X, et al. Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables. PeerJ. 2018;6:e5186. https://pubmed.ncbi.nlm.nih.gov/30083436/
7262
Ju S, Mu J, Dokland T, et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther. 2013;21(7):1345–57. https://pubmed.ncbi.nlm.nih.gov/23752315/
7263
Mu J,