Шрифт:
Закладка:
7295
Melnik BC, Stremmel W, Weiskirchen R, John SM, Schmitz G. Exosome-derived microRNAs of human milk and their effects on infant health and development. Biomolecules. 2021;11(6):851. https://pubmed.ncbi.nlm.nih.gov/34200323/
7296
Melnik BC, Schmitz G. MicroRNAs: milk’s epigenetic regulators. Best Pract Res Clin Endocrinol Metab. 2017;31(4):427–42. https://pubmed.ncbi.nlm.nih.gov/29221571/
7297
Melnik BC. Lifetime impact of cow’s milk on overactivation of mTORC1: from fetal to childhood overgrowth, acne, diabetes, cancers, and neurodegeneration. Biomolecules. 2021;11(3):404. https://pubmed.ncbi.nlm.nih.gov/33803410/
7298
Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med. 2019;17(1):3. https://pubmed.ncbi.nlm.nih.gov/30602375/
7299
Victora CG, Bahl R, Barros AJD, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. 2016;387(10017):475–90. https://pubmed.ncbi.nlm.nih.gov/26869575/
7300
Chen Z, Xie Y, Luo J, et al. Milk exosome-derived miRNAs from water buffalo are implicated in immune response and metabolism process. BMC Vet Res. 2020;16(1):123. https://pubmed.ncbi.nlm.nih.gov/32349776/
7301
Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J. MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. J Nutr. 2014;144(10):1495–500. https://pubmed.ncbi.nlm.nih.gov/25122645/
7302
McNeill EM, Hirschi KD. Roles of regulatory RNAs in nutritional control. Annu Rev Nutr. 2020;40:77–104. https://pubmed.ncbi.nlm.nih.gov/32966184/
7303
Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med. 2019;17(1):3. https://pubmed.ncbi.nlm.nih.gov/30602375/
7304
Benmoussa A, Lee CHC, Laffont B, et al. Commercial dairy cow milk microRNAs resist digestion under simulated gastrointestinal tract conditions. J Nutr. 2016;146(11):2206–15. https://pubmed.ncbi.nlm.nih.gov/27708120/
7305
López de Las Hazas MC, Del Pozo-Acebo L, Hansen MS, et al. Dietary bovine milk miRNAs transported in extracellular vesicles are partially stable during GI digestion, are bioavailable and reach target tissues but need a minimum dose to impact on gene expression. Eur J Nutr. 2022;61(2):1043–56. https://pubmed.ncbi.nlm.nih.gov/34716465/
7306
Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J. MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. J Nutr. 2014;144(10):1495–500. https://pubmed.ncbi.nlm.nih.gov/25122645/
7307
Wang L, Sadri M, Giraud D, Zempleni J. RNase H2-dependent polymerase chain reaction and elimination of confounders in sample collection, storage, and analysis strengthen evidence that microRNAs in bovine milk are bioavailable in humans. J Nutr. 2018;148(1):153–9. https://pubmed.ncbi.nlm.nih.gov/29378054/
7308
Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med. 2019;17(1):3. https://pubmed.ncbi.nlm.nih.gov/30602375/
7309
Melnik BC. Milk exosomal miRNAs: potential drivers of AMPK-to-mTORC1 switching in ß-cell de-differentiation of type 2 diabetes mellitus. Nutr Metab (Lond). 2019;16:85. https://pubmed.ncbi.nlm.nih.gov/31827573/
7310
Melnik BC. Synergistic effects of milk-derived exosomes and galactose on a-synuclein pathology in Parkinson’s disease and type 2 diabetes mellitus. Int J Mol Sci. 2021;22(3):1059. https://pubmed.ncbi.nlm.nih.gov/33494388/
7311
Melnik BC, Schmitz G. MicroRNAs: milk’s epigenetic regulators. Best Pract Res Clin Endocrinol Metab. 2017;31(4):427–42. https://pubmed.ncbi.nlm.nih.gov/29221571/
7312
Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med. 2019;17(1):3. https://pubmed.ncbi.nlm.nih.gov/30602375/
7313
Murata T, Takayama K, Katayama S, et al. miR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression. Prostate Cancer Prostatic Dis. 2010;13(4):356–61. https://pubmed.ncbi.nlm.nih.gov/20820187/
7314
Tate PL, Bibb R, Larcom LL. Milk stimulates growth of prostate cancer cells in culture. Nutr Cancer. 2011;63(8):1361–6. https://pubmed.ncbi.nlm.nih.gov/22043817/
7315
Sargsyan A, Dubasi HB. Milk consumption and prostate cancer: a systematic review. World J Mens Health. 2021;39(3):419–28. https://pubmed.ncbi.nlm.nih.gov/32777868/
7316
Melnik BC, Schmitz G. Milk’s role as an epigenetic regulator in health and disease. Diseases. 2017;5(1):12. https://pubmed.ncbi.nlm.nih.gov/28933365/
7317
Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med. 2019;17(1):3. https://pubmed.ncbi.nlm.nih.gov/30602375/
7318
Michaëlsson K, Wolk A, Langenskiöld S, et al. Milk intake and risk of mortality and fractures in women and men: cohort studies. BMJ. 2014;349:g6015. https://pubmed.ncbi.nlm.nih.gov/25352269/
7319
Yu S, Zhao Z, Sun LM, Li P. Fermentation results in quantitative changes in milk-derived exosomes and different effects on cell growth and survival. J Agric Food Chem. 2017;65(6):1220–8. https://pubmed.ncbi.nlm.nih.gov/28085261/
7320
Savaiano DA, Hutkins RW. Yogurt, cultured fermented milk, and health: a systematic review. Nutr Rev. 2021;79(5):599–614. https://pubmed.ncbi.nlm.nih.gov/32447398/
7321
Wehbe Z, Kreydiyyeh S. Cow’s milk may be delivering potentially harmful undetected cargoes to humans. Is it time to reconsider dairy recommendations? Nutr Rev. 2022;80(4):874–88. https://pubmed.ncbi.nlm.nih.gov/34338770/
7322
Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med. 2019;17(1):3. https://pubmed.ncbi.nlm.nih.gov/30602375/
7323
Teodori L, Petrignani I, Giuliani A, et al. Inflamm-aging microRNAs may integrate signals from food and gut microbiota by modulating common signalling pathways. Mech Ageing Dev. 2019;182:111127. https://pubmed.ncbi.nlm.nih.gov/31401225/
7324
Tsai F, Coyle WJ. The microbiome and obesity: is obesity linked to our gut flora? Curr Gastroenterol Rep. 2009;11(4):307–13. https://pubmed.ncbi.nlm.nih.gov/19615307/
7325
Stephen AM, Cummings JH. The microbial contribution to human faecal mass. J Med Microbiol. 1980;13(1):45–56. https://pubmed.ncbi.nlm.nih.gov/7359576/
7326
Singh RK, Chang HW, Yan D, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5385025/