Онлайн
библиотека книг
Книги онлайн » Медицина » Живи долго! Научный подход к долгой молодости и здоровью - Майкл Грегер

Шрифт:

-
+

Закладка:

Сделать
1 ... 475 476 477 478 479 480 481 482 483 ... 510
Перейти на страницу:
due to pneumonia. Am J Respir Crit Care Med. 2005;172(11):1440–6. https://pubmed.ncbi.nlm.nih.gov/16166617/

7429

Antunes G, Evans SA, Lordan JL, Frew AJ. Systemic cytokine levels in community-acquired pneumonia and their association with disease severity. Eur Respir J. 2002;20(4):990–5. https://pubmed.ncbi.nlm.nih.gov/16166617/

7430

Reade MC, Yende S, D’Angelo G, et al. Differences in immune response may explain lower survival among older men with pneumonia. Crit Care Med. 2009;37(5):1655–62. https://pubmed.ncbi.nlm.nih.gov/19325487/

7431

Hearps AC, Martin GE, Angelovich TA, et al. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell. 2012;11(5):867–75. https://pubmed.ncbi.nlm.nih.gov/22708967/

7432

Thevaranjan N, Puchta A, Schulz C, et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe. 2017;21(4):455–66. https://pubmed.ncbi.nlm.nih.gov/28407483/

7433

Biragyn A, Ferrucci L. Gut dysbiosis: a potential link between increased cancer risk in ageing and inflammaging. Lancet Oncol. 2018;19(6):e295–304. https://pubmed.ncbi.nlm.nih.gov/29893261/

7434

Venkatakrishnan A, Holzknecht ZE, Holzknecht R, et al. Evolution of bacteria in the human gut in response to changing environments: an invisible player in the game of health. Comput Struct Biotechnol J. 2021;19:752–8. https://pubmed.ncbi.nlm.nih.gov/33552447/

7435

Kilkkinen A, Rissanen H, Klaukka T, et al. Antibiotic use predicts an increased risk of cancer. Int J Cancer. 2008;123(9):2152–5. https://pubmed.ncbi.nlm.nih.gov/18704945/

7436

Wise R, Hart T, Cars O, et al. Antimicrobial resistance. BMJ. 1998;317(7159):609–10. https://pubmed.ncbi.nlm.nih.gov/9727981/

7437

Vemuri R, Gundamaraju R, Shastri MD, et al. Gut microbial changes, interactions, and their implications on human lifecycle: an ageing perspective. BioMed Res Int. 2018;2018:4178607. https://pubmed.ncbi.nlm.nih.gov/29682542/

7438

Collignon PJ, Conly JM, Andremont A, et al. World Health Organization ranking of antimicrobials according to their importance in human medicine: a critical step for developing risk management strategies to control antimicrobial resistance from food animal production. Clin Infect Dis. 2016;63(8):1087–93. https://pubmed.ncbi.nlm.nih.gov/27439526/

7439

Office of Technology Assessment. Drugs in Livestock Feed. Congress of the United States, Office of Technology Assessment; 1979. https://worldcat.org/title/1295046620

7440

Galloway-Peña JR, Jenq RR. The only thing that stops a bad microbiome, is a good microbiome. Haematologica. 2019;104(8):1511–3. https://pubmed.ncbi.nlm.nih.gov/31366464/

7441

Subirats J, Domingues A, Topp E. Does dietary consumption of antibiotics by humans promote antibiotic resistance in the gut microbiome? J Food Prot. 2019;82(10):1636–42. https://pubmed.ncbi.nlm.nih.gov/31512932/

7442

Angulo FJ, Baker NL, Olsen SJ, Anderson A, Barrett TJ. Antimicrobial use in agriculture: controlling the transfer of antimicrobial resistance to humans. Semin Pediatr Infect Dis. 2004;15(2):78–85. https://pubmed.ncbi.nlm.nih.gov/15185190/

7443

Milanovic V, Osimani A, Aquilanti L, et al. Occurrence of antibiotic resistance genes in the fecal DNA of healthy omnivores, ovo-lacto vegetarians and vegans. Mol Nutr Food Res. 2017;61(9). https://pubmed.ncbi.nlm.nih.gov/28464483/

7444

Cabral DJ, Wurster JI, Korry BJ, Penumutchu S, Belenky P. Consumption of a Western-style diet modulates the response of the murine gut microbiome to ciprofloxacin. mSystems. 2020;5(4):e00317–20. https://pubmed.ncbi.nlm.nih.gov/32723789/

7445

Schnizlein MK, Vendrov KC, Edwards SJ, Martens EC, Young VB. Dietary xanthan gum alters antibiotic efficacy against the murine gut microbiota and attenuates Clostridioides difficile colonization. mSphere. 2020;5(1):e00708–19. https://pubmed.ncbi.nlm.nih.gov/31915217/

7446

Bassis CM. Live and diet by your gut microbiota. mBio. 2019;10(5):e02335–19. https://pubmed.ncbi.nlm.nih.gov/31594820/

7447

Martínez Steele E, Baraldi LG, Louzada ML da C, Moubarac JC, Mozaffarian D, Monteiro CA. Ultra-processed foods and added sugars in the US diet: evidence from a nationally representative cross-sectional study. BMJ Open. 2016;6(3):e009892. https://pubmed.ncbi.nlm.nih.gov/26962035/

7448

Wilck N, Matus MG, Kearney SM, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. 2017;551(7682):585–9. https://pubmed.ncbi.nlm.nih.gov/29143823/

7449

Bisoendial R, Lubberts E. A mechanistic insight into the pathogenic role of interleukin 17A in systemic autoimmune diseases. Mediators Inflamm. 2022;2022:6600264. https://pubmed.ncbi.nlm.nih.gov/35620115/

7450

Wilck N, Matus MG, Kearney SM, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. 2017;551(7682):585–9. https://pubmed.ncbi.nlm.nih.gov/29143823/

7451

Suez J, Korem T, Zilberman-Schapira G, Segal E, Elinav E. Non-caloric artificial sweeteners and the microbiome: findings and challenges. Gut Microbes. 2015;6(2):149–55. https://pubmed.ncbi.nlm.nih.gov/25831243/

7452

Laster J, Bonnes SL, Rocha J. Increased use of emulsifiers in processed foods and the links to obesity. Curr Gastroenterol Rep. 2019;21(11):61. https://pubmed.ncbi.nlm.nih.gov/31792622/

7453

Naimi S, Viennois E, Gewirtz AT, Chassaing B. Direct impact of commonly used dietary emulsifiers on human gut microbiota. Microbiome. 2021;9(1):66. https://pubmed.ncbi.nlm.nih.gov/33752754/

7454

Birkett A, Muir J, Phillips J, Jones G, O’Dea K. Resistant starch lowers fecal concentrations of ammonia and phenols in humans. Am J Clin Nutr. 1996;63(5):766–72. https://pubmed.ncbi.nlm.nih.gov/8615362/

7455

Windey K, De Preter V, Verbeke K. Relevance of protein fermentation to gut health. Mol Nutr Food Res. 2012;56(1):184–96. https://pubmed.ncbi.nlm.nih.gov/22121108/

7456

Magee E. A nutritional component to inflammatory bowel disease: the contribution of meat to fecal sulfide excretion. Nutrition. 1999;15(3):244–6. https://pubmed.ncbi.nlm.nih.gov/10198924/

7457

Ge J, Han TJ, Liu J, et al. Meat intake and risk of inflammatory bowel disease: a meta-analysis. Turk J Gastroenterol. 2015;26(6):492–7. https://pubmed.ncbi.nlm.nih.gov/26575042/

7458

Parra-Soto S, Ahumada D, Petermann-Rocha F, et al. Association of meat, vegetarian, pescatarian and fish-poultry diets with risk of 19 cancer sites and all cancer: findings from the UK Biobank prospective cohort study and meta-analysis. BMC Med. 2022;20(1):79. https://pubmed.ncbi.nlm.nih.gov/35655214/

7459

Florin THJ, Neale G, Goretski S, Cummings JH. The sulfate content of foods and beverages. J Food Comp Anal. 1993;6(2):140–51. https://pubmed.ncbi.nlm.nih.gov/1855683/

7460

Ananthakrishnan AN, Khalili H, Konijeti GG,

1 ... 475 476 477 478 479 480 481 482 483 ... 510
Перейти на страницу: