Шрифт:
Закладка:
7555
Singh RK, Chang HW, Yan D, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5385025/
7556
Franco-de-Moraes AC, de Almeida-Pititto B, da Rocha Fernandes G, Gomes EP, da Costa Pereira A, Ferreira SRG. Worse inflammatory profile in omnivores than in vegetarians associates with the gut microbiota composition. Diabetol Metab Syndr. 2017;9:62. https://pubmed.ncbi.nlm.nih.gov/28814977/
7557
Kim MS, Hwang SS, Park EJ, Bae JW. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation. Environ Microbiol Rep. 2013;5(5):765–75. https://pubmed.ncbi.nlm.nih.gov/24115628/
7558
Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol. 2019;16(1):35–56. https://pubmed.ncbi.nlm.nih.gov/30262901/
7559
Asnicar F, Berry SE, Valdes AM, et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat Med. 2021;27(2):321–32. https://pubmed.ncbi.nlm.nih.gov/33432175/
7560
De Filippis F, Pellegrini N, Vannini L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65(11):1812–21. https://pubmed.ncbi.nlm.nih.gov/26416813/
7561
Freeland KR, Wilson C, Wolever TM. Adaptation of colonic fermentation and glucagon-like peptide-1 secretion with increased wheat fibre intake for 1 year in hyperinsulinaemic human subjects. Br J Nutr. 2010;103(1):82–90. https://pubmed.ncbi.nlm.nih.gov/19664300/
7562
Wu GD, Compher C, Chen EZ, et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut. 2016;65(1):63–72. https://pubmed.ncbi.nlm.nih.gov/25431456/
7563
Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids. National Academy Press; 2005. https://worldcat.org/title/57373786
7564
Jew S, Abumweis SS, Jones PJ. Evolution of the human diet: linking our ancestral diet to modern functional foods as a means of chronic disease prevention. J Med Food. 2009;12(5):925–34. https://pubmed.ncbi.nlm.nih.gov/19857053/
7565
Leach JD, Sobolik KD. High dietary intake of prebiotic inulin-type fructans in the prehistoric Chihuahuan Desert. Br J Nutr. 2010;103(11):1558–61. https://pubmed.ncbi.nlm.nih.gov/20416127/
7566
Institute of Medicine (U.S.). Dietary Reference Intakes: Proposed Definition of Dietary Fiber. National Academies Press; 2001. https://pubmed.ncbi.nlm.nih.gov/25057569/
7567
Burkitt DP, Meisner P. How to manage constipation with high-fiber diet. Geriatrics. 1979;34(2):33–5 https://pubmed.ncbi.nlm.nih.gov/104901/
7568
Requena T, Martínez-Cuesta MC, Peláez C. Diet and microbiota linked in health and disease. Food Funct. 2018;9(2):688–704. https://pubmed.ncbi.nlm.nih.gov/29410981/
7569
Han M, Wang C, Liu P, Li D, Li Y, Ma X. Dietary fiber gap and host gut microbiota. Protein Pept Lett. 2017;24(5):388–96. https://pubmed.ncbi.nlm.nih.gov/28219317/
7570
Venkatakrishnan A, Holzknecht ZE, Holzknecht R, et al. Evolution of bacteria in the human gut in response to changing environments: an invisible player in the game of health. Comput Struct Biotechnol J. 2021;19:752–8. https://pubmed.ncbi.nlm.nih.gov/33552447/
7571
Hamaker BR, Cantu-Jungles TM. Discrete fiber structures dictate human gut bacteria outcomes. Trends Endocrinol Metab. 2020;31(11):803–5. https://pubmed.ncbi.nlm.nih.gov/32448722/
7572
Tap J, Furet JP, Bensaada M, et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ Microbiol. 2015;17(12):4954–64. https://pubmed.ncbi.nlm.nih.gov/26235304/
7573
Walter J, Martínez I, Rose DJ. Holobiont nutrition: considering the role of the gastrointestinal microbiota in the health benefits of whole grains. Gut Microbes. 2013;4(4):340–6. https://pubmed.ncbi.nlm.nih.gov/23645316/
7574
Toribio-Mateas M. Harnessing the power of microbiome assessment tools as part of neuroprotective nutrition and lifestyle medicine interventions. Microorganisms. 2018;6(2):35. https://pubmed.ncbi.nlm.nih.gov/29693607/
7575
McRorie J. Clinical data support that psyllium is not fermented in the gut. Am J Gastroenterol. 2013;108(9):1541. https://pubmed.ncbi.nlm.nih.gov/24005363/
7576
Almeida A, Mitchell AL, Boland M, et al. A new genomic blueprint of the human gut microbiota. Nature. 2019;568(7753):499–504. https://pubmed.ncbi.nlm.nih.gov/30745586/
7577
Pereira FC, Berry D. Microbial nutrient niches in the gut. Environ Microbiol. 2017;19(4):1366–78. https://pubmed.ncbi.nlm.nih.gov/28035742/
7578
O’Keefe SJD. The need to reassess dietary fiber requirements in healthy and critically ill patients. Gastroenterol Clin North Am. 2018;47(1):219–29. https://pubmed.ncbi.nlm.nih.gov/29413014/
7579
Swain Ewald HA, Ewald PW. Natural selection, the microbiome, and public health. Yale J Biol Med. 2018;91(4):445–55. https://pubmed.ncbi.nlm.nih.gov/30588210/
7580
Dewulf EM, Cani PD, Claus SP, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut. 2013;62(8):1112–21. https://pubmed.ncbi.nlm.nih.gov/23135760/
7581
Hill P, Muir JG, Gibson PR. Controversies and recent developments of the low-FODMAP diet. Gastroenterol Hepatol (N Y). 2017;13(1):36–45. https://pubmed.ncbi.nlm.nih.gov/28420945/
7582
Yadav BS, Sharma A, Yadav RB. Studies on effect of multiple heating/cooling cycles on the resistant starch formation in cereals, legumes and tubers. Int J Food Sci Nutr. 2009;60 Suppl 4:258–72. https://pubmed.ncbi.nlm.nih.gov/19562607/
7583
Fernando WMU, Hill JE, Zello GA, Tyler RT, Dahl WJ, Van Kessel AG. Diets supplemented with chickpea or its main oligosaccharide component raffinose modify faecal microbial composition in healthy adults. Benef Microbes. 2010;1(2):197–207. https://pubmed.ncbi.nlm.nih.gov/21831757/
7584
Jin S, Je Y. Nuts and legumes consumption and risk of colorectal cancer: a systematic review and meta-analysis. Eur J Epidemiol. 2022;37(6):569–85. https://pubmed.ncbi.nlm.nih.gov/35622305/
7585
Hangen L, Bennink MR. Consumption of black beans and navy beans (Phaseolus vulgaris) reduced azoxymethane-induced colon cancer in rats. Nutr Cancer. 2002;44(1):60–5. https://pubmed.ncbi.nlm.nih.gov/12672642/
7586
Holscher HD. Diet affects the gastrointestinal microbiota