Онлайн
библиотека книг
Книги онлайн » Медицина » Живи долго! Научный подход к долгой молодости и здоровью - Майкл Грегер

Шрифт:

-
+

Закладка:

Сделать
1 ... 461 462 463 464 465 466 467 468 469 ... 510
Перейти на страницу:

6980

Hair R, Sakaki JR, Chun OK. Anthocyanins, microbiome and health benefits in aging. Molecules. 2021;26(3):537. https://pubmed.ncbi.nlm.nih.gov/33494165/

6981

Vendrame S, Guglielmetti S, Riso P, Arioli S, Klimis-Zacas D, Porrini M. Six-week consumption of a wild blueberry powder drink increases bifidobacteria in the human gut. J Agric Food Chem. 2011;59(24):12815–20. https://pubmed.ncbi.nlm.nih.gov/22060186/

6982

Molan AL, Liu Z, Plimmer G. Evaluation of the effect of blackcurrant products on gut microbiota and on markers of risk for colon cancer in humans. Phytother Res. 2014;28(3):416–22. https://pubmed.ncbi.nlm.nih.gov/23674271/

6983

Mayta-Apaza AC, Pottgen E, De Bodt J, et al. Impact of tart cherries polyphenols on the human gut microbiota and phenolic metabolites in vitro and in vivo. J Nutr Biochem. 2018;59:160–72. https://pubmed.ncbi.nlm.nih.gov/30055451/

6984

Fallah AA, Sarmast E, Jafari T. Effect of dietary anthocyanins on biomarkers of glycemic control and glucose metabolism: a systematic review and meta-analysis of randomized clinical trials. Food Res Int. 2020;137:109379. https://pubmed.ncbi.nlm.nih.gov/33233081/

6985

Stull AJ, Cash KC, Johnson WD, Champagne CM, Cefalu WT. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. J Nutr. 2010;140(10):1764–8. https://pubmed.ncbi.nlm.nih.gov/20724487/

6986

Kimble R, Keane KM, Lodge JK, Howatson G. Dietary intake of anthocyanins and risk of cardiovascular disease: a systematic review and meta-analysis of prospective cohort studies. Crit Rev Food Sci Nutr. 2019;59(18):3032–43. https://pubmed.ncbi.nlm.nih.gov/30277799/

6987

Wedick NM, Pan A, Cassidy A, et al. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am J Clin Nutr. 2012;95(4):925–33. https://pubmed.ncbi.nlm.nih.gov/22357723/

6988

Ahles S, Joris PJ, Plat J. Effects of berry anthocyanins on cognitive performance, vascular function and cardiometabolic risk markers: a systematic review of randomized placebo-controlled intervention studies in humans. Int J Mol Sci. 2021;22(12):6482. https://pubmed.ncbi.nlm.nih.gov/34204250/

6989

Xu L, Tian Z, Chen H, Zhao Y, Yang Y. Anthocyanins, anthocyanin-rich berries, and cardiovascular risks: systematic review and meta-analysis of 44 randomized controlled trials and 15 prospective cohort studies. Front Nutr. 2021;8:747884. https://pubmed.ncbi.nlm.nih.gov/34977111/

6990

Aune D, Giovannucci E, Boffetta P, et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality – a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol. 2017;46(3):1029–56. https://pubmed.ncbi.nlm.nih.gov/28338764/

6991

Del Bo’ C, Porrini M, Fracassetti D, Campolo J, Klimis-Zacas D, Riso P. A single serving of blueberry (V. corymbosum) modulates peripheral arterial dysfunction induced by acute cigarette smoking in young volunteers: a randomized-controlled trial. Food Funct. 2014;5(12):3107–16. https://pubmed.ncbi.nlm.nih.gov/25263326/

6992

Zhu Y, Xia M, Yang Y, et al. Purified anthocyanin supplementation improves endothelial function via NO-cGMP activation in hypercholesterolemic individuals. Clin Chem. 2011;57(11):1524–33. https://pubmed.ncbi.nlm.nih.gov/21926181/

6993

Rodriguez-Mateos A, Istas G, Boschek L, et al. Circulating anthocyanin metabolites mediate vascular benefits of blueberries: insights from randomized controlled trials, metabolomics, and nutrigenomics. J Gerontol A Biol Sci Med Sci. 2019;74(7):967–76. https://pubmed.ncbi.nlm.nih.gov/30772905/

6994

Daneshzad E, Shab-Bidar S, Mohammadpour Z, Djafarian K. Effect of anthocyanin supplementation on cardio-metabolic biomarkers: a systematic review and meta-analysis of randomized controlled trials. Clin Nutr. 2019;38(3):1153–65. https://pubmed.ncbi.nlm.nih.gov/30007479/

6995

Horbowicz M, Kosson R, Grzesiuk A, Debski H. Anthocyanins of fruits and vegetables – their occurrence, analysis and role in human nutrition. J Fruit Ornam Plant Res. 2008;68(1):5–22. https://www.researchgate.net/publication/284789289_Anthocyanins_of_fruits_and_vegetables-their_occurrence_analysis_and_role_in_human_nutrition

6996

Ucar SK, Sözmen E, Yildirim HK, Coker M. Effect of blueberry tea on lipid and antioxidant status in children with heterozygous familial hypercholesterolemia: pilot study. Clin Lipidol. 2014;9(3):295–304. https://www.tandfonline.com/doi/pdf/10.2217/clp.14.26?needAccess=true

6997

Pojer E, Mattivi F, Johnson D, Stockley CS. The case for anthocyanin consumption to promote human health: a review. Compr Rev Food Sci Food Saf. 2013;12(5):483–508. https://pubmed.ncbi.nlm.nih.gov/33412667/

6998

Mattioli R, Francioso A, Mosca L, Silva P. Anthocyanins: a comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules. 2020;25(17):E3809. https://pubmed.ncbi.nlm.nih.gov/32825684/

6999

Lu X, Zhou Y, Wu T, Hao L. Ameliorative effect of black rice anthocyanin on senescent mice induced by D-galactose. Food Funct. 2014;5(11):2892–7. https://pubmed.ncbi.nlm.nih.gov/25190075/

7000

Chen W, Müller D, Richling E, Wink M. Anthocyanin-rich purple wheat prolongs the life span of Caenorhabditis elegans probably by activating the DAF-16/FOXO transcription factor. J Agric Food Chem. 2013;61(12):3047–53. https://pubmed.ncbi.nlm.nih.gov/23470220/

7001

Blau LW. Cherry diet control for gout and arthritis. Tex Rep Biol Med. 1950;8(3):309–11. https://pubmed.ncbi.nlm.nih.gov/14776685/

7002

Kelley DS, Rasooly R, Jacob RA, Kader AA, Mackey BE. Consumption of Bing sweet cherries lowers circulating concentrations of inflammation markers in healthy men and women. J Nutr. 2006;136(4):981–6. https://pubmed.ncbi.nlm.nih.gov/16549461/

7003

Kelley DS, Adkins Y, Laugero KD. A review of the health benefits of cherries. Nutrients. 2018;10(3):368. https://pubmed.ncbi.nlm.nih.gov/29562604/

7004

Sun Y, Yolitz J, Alberico T, Sun X, Zou S. Lifespan extension by cranberry supplementation partially requires SOD2 and is life stage independent. Exp Gerontol. 2014;50:57–63. https://pubmed.ncbi.nlm.nih.gov/24316039/

7005

Guha S, Cao M, Kane RM, Savino AM, Zou S, Dong Y. The longevity effect of cranberry extract in Caenorhabditis elegans is modulated by daf-16 and osr-1. Age (Dordr). 2013;35(5):1559–74. https://pubmed.ncbi.nlm.nih.gov/22864793/

7006

Zhu M, Hu J, Perez E, et al. Effects of long-term cranberry supplementation on endocrine pancreas in aging rats. J Gerontol A Biol Sci Med Sci. 2011;66(11):1139–51. https://pubmed.ncbi.nlm.nih.gov/21768504/

7007

Gao Y, Wei Y, Wang Y, Gao F, Chen Z. Lycium barbarum: a traditional Chinese herb and a promising anti-aging agent. Aging and Disease. 2017;8(6):778. https://pubmed.ncbi.nlm.nih.gov/29344416/

7008

Neelam K, Dey S,

1 ... 461 462 463 464 465 466 467 468 469 ... 510
Перейти на страницу: