Шрифт:
Закладка:
5724
Welch AA, Jennings A, Kelaiditi E, Skinner J, Steves CJ. Cross-sectional associations between dietary antioxidant vitamins C, E and carotenoid intakes and sarcopenic indices in women aged 18–79 years. Calcif Tissue Int. 2020;106(4):331–42. https://pubmed.ncbi.nlm.nih.gov/27417218/
5725
Scott D, Blizzard L, Fell J, Giles G, Jones G. Associations between dietary nutrient intake and muscle mass and strength in community-dwelling older adults: the Tasmanian Older Adult Cohort Study. J Am Geriatr Soc. 2010;58(11):2129–34. https://pubmed.ncbi.nlm.nih.gov/21054294/
5726
Saito K, Yokoyama T, Yoshida H, et al. A significant relationship between plasma vitamin C concentration and physical performance among Japanese elderly women. J Gerontol A Biol Sci Med Sci. 2012;67(3):295–301. https://pubmed.ncbi.nlm.nih.gov/21934124/
5727
Takahashi F, Hashimoto Y, Kaji A, et al. Vitamin intake and loss of muscle mass in older people with type 2 diabetes: a prospective study of the KAMOGAWA-DM cohort. Nutrients. 2021;13(7):2335. https://pubmed.ncbi.nlm.nih.gov/34371843/
5728
Saito K, Yokoyama T, Yoshida H, et al. A significant relationship between plasma vitamin C concentration and physical performance among Japanese elderly women. J Gerontol A Biol Sci Med Sci. 2012;67(3):295–301. https://pubmed.ncbi.nlm.nih.gov/21934124/
5729
Tak YJ, Lee JG, Yi YH, et al. Association of handgrip strength with dietary intake in the Korean population: findings based on the Seventh Korea National Health and Nutrition Examination Survey (KNHANES VII-1), 2016. Nutrients. 2018;10(9):1180. https://pubmed.ncbi.nlm.nih.gov/30154371/
5730
Gedmantaite A, Celis-Morales CA, Ho F, Pell JP, Ratkevicius A, Gray SR. Associations between diet and handgrip strength: a cross-sectional study from UK Biobank. Mech Ageing Dev. 2020;189:111269. https://pubmed.ncbi.nlm.nih.gov/32479757/
5731
Fingeret M, Vollenweider P, Marques-Vidal P. No association between vitamin C and E supplementation and grip strength over 5 years: the Colaus study. Eur J Nutr. 2019;58(2):609–17. https://pubmed.ncbi.nlm.nih.gov/29484474/
5732
Kenjale AA, Ham KL, Stabler T, et al. Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease. J Appl Physiol (1985). 2011;110(6):1582–91. https://pubmed.ncbi.nlm.nih.gov/21454745/
5733
Sobko T, Marcus C, Govoni M, Kamiya S. Dietary nitrate in Japanese traditional foods lowers diastolic blood pressure in healthy volunteers. Nitric Oxide. 2010;22(2):136–40. https://pubmed.ncbi.nlm.nih.gov/19887114/
5734
What we eat in America, NHANES 2017–March 2020 prepandemic. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1720/Table_1_NIN_GEN_1720.pdf. Published 2022. Accessed January 13, 2023.; https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1720/Table_1_NIN_GEN_1720.pdf
5735
Abete I, Konieczna J, Zulet MA, et al. Association of lifestyle factors and inflammation with sarcopenic obesity: data from the PREDIMED-Plus trial. J Cachexia Sarcopenia Muscle. 2019;10(5):974–84. https://pubmed.ncbi.nlm.nih.gov/31144432/
5736
Chaput JP, Lord C, Cloutier M, et al. Relationship between antioxidant intakes and class I sarcopenia in elderly men and women. J Nutr Health Aging. 2007;11(4):363–9. https://pubmed.ncbi.nlm.nih.gov/17653501/
5737
Verlaan S, Aspray TJ, Bauer JM, et al. Nutritional status, body composition, and quality of life in community-dwelling sarcopenic and non-sarcopenic older adults: a case-control study. Clin Nutr. 2017;36(1):267–74. https://pubmed.ncbi.nlm.nih.gov/26689868/
5738
ter Borg S, de Groot LCPGM, Mijnarends DM, et al. Differences in nutrient intake and biochemical nutrient status between sarcopenic and nonsarcopenic older adults – results from the Maastricht Sarcopenia Study. J Am Med Dir Assoc. 2016;17(5):393–401. https://pubmed.ncbi.nlm.nih.gov/26825685/
5739
Clifford T, Jeffries O, Stevenson EJ, Davies KAB. The effects of vitamin C and E on exercise-induced physiological adaptations: a systematic review and meta-analysis of randomised controlled trials. Crit Rev Food Sci Nutr. 2020;60(21):3669–79. https://pubmed.ncbi.nlm.nih.gov/31851538/
5740
Jackson MA, Jeffery IB, Beaumont M, et al. Signatures of early frailty in the gut microbiota. Genome Med. 2016;8(1):8. https://pubmed.ncbi.nlm.nih.gov/26822992/
5741
Ticinesi A, Nouvenne A, Cerundolo N, et al. Gut microbiota, muscle mass and function in aging: a focus on physical frailty and sarcopenia. Nutrients. 2019;11(7):E1633. https://pubmed.ncbi.nlm.nih.gov/31319564/
5742
van Tongeren SP, Slaets JPJ, Harmsen HJM, Welling GW. Fecal microbiota composition and frailty. Appl Environ Microbiol. 2005;71(10):6438–42. https://pubmed.ncbi.nlm.nih.gov/16204576/
5743
Montiel-Rojas D, Nilsson A, Santoro A, et al. Dietary fibre may mitigate sarcopenia risk: findings from the NU-AGE cohort of older European adults. Nutrients. 2020;12(4):E1075. https://pubmed.ncbi.nlm.nih.gov/32295007/
5744
Berendsen AAM, van de Rest O, Feskens EJM, et al. Changes in dietary intake and adherence to the NU-AGE diet following a one-year dietary intervention among European older adults – results of the NU-AGE randomized trial. Nutrients. 2018;10(12):E1905. https://pubmed.ncbi.nlm.nih.gov/30518044/
5745
Buigues C, Fernández-Garrido J, Pruimboom L, et al. Effect of a prebiotic formulation on frailty syndrome: a randomized, double-blind clinical trial. Int J Mol Sci. 2016;17(6):E932. https://pubmed.ncbi.nlm.nih.gov/27314331/
5746
Lee MC, Tu YT, Lee CC, et al. Lactobacillus plantarum TWK10 improves muscle mass and functional performance in frail older adults: a randomized, double-blind clinical trial. Microorganisms. 2021;9(7):1466. https://pubmed.ncbi.nlm.nih.gov/34361902/
5747
Yang HL, Feng P, Xu Y, Hou YY, Ojo O, Wang XH. The role of dietary fiber supplementation in regulating uremic toxins in patients with chronic kidney disease: a meta-analysis of randomized controlled trials. J Ren Nutr. 2021;31(5):438–47. https://pubmed.ncbi.nlm.nih.gov/33741249/
5748
Strasser B, Wolters M, Weyh C, Krüger K, Ticinesi A. The effects of lifestyle and diet on gut microbiota composition, inflammation and muscle performance in our aging society. Nutrients. 2021;13(6):2045. https://pubmed.ncbi.nlm.nih.gov/34203776/
5749
Enoki Y, Watanabe H, Arake R, et al. Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress – mediated expression of myostatin and atrogin-1. Sci Rep. 2016;6:32084. https://pubmed.ncbi.nlm.nih.gov/27549031/
5750
Dawson-Hughes B, Castaneda-Sceppa C, Harris SS, et al. Impact of supplementation with bicarbonate on lower-extremity muscle performance in older men and women. Osteoporos Int. 2010;21(7):1171–9. https://pubmed.ncbi.nlm.nih.gov/19727904/