Шрифт:
Закладка:
5365
Zhang DM, Ye JX, Mu JS, Cui XP. Efficacy of vitamin B supplementation on cognition in elderly patients with cognitive-related diseases. J Geriatr Psychiatry Neurol. 2017;30(1):50–9. https://pubmed.ncbi.nlm.nih.gov/28248558/
5366
Behrens A, Graessel E, Pendergrass A, Donath C. Vitamin B – Can it prevent cognitive decline? A systematic review and meta-analysis. Syst Rev. 2020;9(1):111. https://pubmed.ncbi.nlm.nih.gov/32414424/
5367
de Jager CA, Oulhaj A, Jacoby R, Refsum H, Smith AD. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial. Int J Geriatr Psychiatry. 2012;27(6):592–600. https://pubmed.ncbi.nlm.nih.gov/21780182/
5368
Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature. 2016;539(7628):180–6. https://pubmed.ncbi.nlm.nih.gov/27830812/
5369
Smith AD, Smith SM, de Jager CA, et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One. 2010;5(9):e12244. https://pubmed.ncbi.nlm.nih.gov/20838622/
5370
Douaud G, Refsum H, de Jager CA, et al. Preventing Alzheimer’s disease – related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci U S A. 2013;110(23):9523–8. https://pubmed.ncbi.nlm.nih.gov/23690582/
5371
Smith AD, Smith SM, de Jager CA, et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One. 2010;5(9):e12244. https://pubmed.ncbi.nlm.nih.gov/20838622/
5372
McCaddon A, Miller JW. Assessing the association between homocysteine and cognition: reflections on Bradford Hill, meta-analyses, and causality. Nutr Rev. 2015;73(10):723–35. https://pubmed.ncbi.nlm.nih.gov/26293664/
5373
Smith AD, Refsum H, Bottiglieri T, et al. Homocysteine and dementia: an international consensus statement. J Alzheimers Dis. 62(2):561–70.; https://pubmed.ncbi.nlm.nih.gov/29480200/
5374
Clarke R, Bennett D, Parish S, et al. Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals. Am J Clin Nutr. 2014;100(2):657–66. https://pubmed.ncbi.nlm.nih.gov/20937919/
5375
McCaddon A, Miller JW. Assessing the association between homocysteine and cognition: reflections on Bradford Hill, meta-analyses, and causality. Nutr Rev. 2015;73(10):723–35. https://pubmed.ncbi.nlm.nih.gov/26293664/
5376
Aisen PS, Schneider LS, Sano M, et al. High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trial. JAMA. 2008;300(15):1774–83. https://pubmed.ncbi.nlm.nih.gov/18854539/
5377
Douaud G, Refsum H, de Jager CA, et al. Preventing Alzheimer’s disease – related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci U S A. 2013;110(23):9523–8. https://pubmed.ncbi.nlm.nih.gov/23690582/
5378
Zhang S, Tomata Y, Sugiyama K, Sugawara Y, Tsuji I. Mushroom consumption and incident dementia in elderly Japanese: the Ohsaki Cohort 2006 Study. J Am Geriatr Soc. 2017;65(7). https://pubmed.ncbi.nlm.nih.gov/28295137/
5379
Durga J, van Boxtel MPJ, Schouten EG, et al. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet. 2007;369(9557):208–16. https://pubmed.ncbi.nlm.nih.gov/17240287/
5380
DeRose DJ, Charles-Marcel ZL, Jamison JM, et al. Vegan diet-based lifestyle program rapidly lowers homocysteine levels. Prev Med. 2000;30(3):225–33. https://pubmed.ncbi.nlm.nih.gov/10684746/
5381
Chandrasekhar C, Kiranmayi VS, Pasupuleti SK, Sarma KV, Sarma PV. Assessment of reference range of serum homocysteine from the post-therapy values of cobalamin and folate deficiency patients. J Assoc Physicians India. 2020;68(9):36–42. https://pubmed.ncbi.nlm.nih.gov/32798344/
5382
Houghton LA, Green TJ, Donovan UM, Gibson RS, Stephen AM, O’Connor DL. Association between dietary fiber intake and the folate status of a group of female adolescents. Am J Clin Nutr. 1997;66(6):1414–21. https://pubmed.ncbi.nlm.nih.gov/9394694/
5383
Guttormsen AB, Schneede J, Fiskerstrand T, Ueland PM, Refsum HM. Plasma concentrations of homocysteine and other aminothiol compounds are related to food intake in healthy human subjects. J Nutr. 1994;124(10):1934–41. https://pubmed.ncbi.nlm.nih.gov/7931702/
5384
Obersby D, Chappell DC, Dunnett A, Tsiami AA. Plasma total homocysteine status of vegetarians compared with omnivores: a systematic review and meta-analysis. Br J Nutr. 2013;109(5):785–94. https://pubmed.ncbi.nlm.nih.gov/23298782/
5385
. Öztürk S, Altieri M, Troisi P. Leonardo Da Vinci and stroke – vegetarian diet as a possible cause. Front Neurol Neurosci. 2010;27:1–10. https://pubmed.ncbi.nlm.nih.gov/20375518/
5386
Crane MG, Register UD, Lukens RH, Gregory R. Cobalamin (CBL) studies on two total vegetarian (vegan) families. Vegetarian Nutrition (United Kingdom). 1998;2(3):87–92. https://agris.fao.org/agris-search/search.do?recordID=GB1997058132
5387
Verghese J, Lipton RB, Katz MJ, et al. Leisure activities and the risk of dementia in the elderly. N Engl J Med. 2003;348(25):2508–16. https://pubmed.ncbi.nlm.nih.gov/12815136/
5388
Cafferata RMT, Hicks B, von Bastian CC. Effectiveness of cognitive stimulation for dementia: a systematic review and meta-analysis. Psychol Bull. 2021;147(5):455–76. https://pubmed.ncbi.nlm.nih.gov/34292011/
5389
Bian X, Wang Y, Zhao X, Zhang Z, Ding C. Does music therapy affect the global cognitive function of patients with dementia? A meta-analysis. NeuroRehabilitation. 2021;48(4):553–62. https://pubmed.ncbi.nlm.nih.gov/33967069/
5390
Moreno-Morales C, Calero R, Moreno-Morales P, Pintado C. Music therapy in the treatment of dementia: a systematic review and meta-analysis. Front Med. 2020;7:160. https://pubmed.ncbi.nlm.nih.gov/32509790/
5391
Lam HL, Li WTV, Laher I, Wong RY. Effects of music therapy on patients with dementia – a systematic review. Geriatrics (Basel). 2020;5(4):E62. https://pubmed.ncbi.nlm.nih.gov/32992767/
5392
Wahl D, Solon-Biet SM, Cogger VC, et al. Aging, lifestyle and dementia. Neurobiol Dis. 2019;130:104481. https://pubmed.ncbi.nlm.nih.gov/31136814/
5393
Liu YH, Gao X, Na M, Kris-Etherton PM, Mitchell DC, Jensen GL. Dietary pattern, diet quality, and dementia: a systematic review and meta-analysis of prospective cohort studies. J Alzheimers Dis. 2020;78(1):151–68. https://pubmed.ncbi.nlm.nih.gov/32955461/
5394
Akbaraly T, Sabia S, Hagger-Johnson G, et al. Does overall diet in midlife predict future aging phenotypes? A cohort study. Am J Med. 2013;126(5):411–9.e3. https://pubmed.ncbi.nlm.nih.gov/23582933/