Шрифт:
Закладка:
5244
McPhee GM, Downey LA, Stough C. Neurotrophins as a reliable biomarker for brain function, structure and cognition: a systematic review and meta-analysis. Neurobiol Learn Mem. 2020;175:107298. https://pubmed.ncbi.nlm.nih.gov/32822863/
5245
Lima Giacobbo B, Doorduin J, Klein HC, Dierckx RAJO, Bromberg E, de Vries EFJ. Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol Neurobiol. 2019;56(5):3295–312. https://pubmed.ncbi.nlm.nih.gov/30117106/
5246
Szuhany KL, Bugatti M, Otto MW. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J Psychiatr Res. 2015;60:56–64. https://pubmed.ncbi.nlm.nih.gov/25455510/
5247
Marquez CMS, Vanaudenaerde B, Troosters T, Wenderoth N. High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. J Appl Physiol (1985). 2015;119(12):1363–73. https://pubmed.ncbi.nlm.nih.gov/26472862/
5248
Ferris LT, Williams JS, Shen CL. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc. 2007;39(4):728–34. https://pubmed.ncbi.nlm.nih.gov/17414812/
5249
Coelho FM, Pereira DS, Lustosa LP, et al. Physical therapy intervention (PTI) increases plasma brain-derived neurotrophic factor (BDNF) levels in non-frail and pre-frail elderly women. Arch Gerontol Geriatr. 2012;54(3):415–20. https://pubmed.ncbi.nlm.nih.gov/21684022/
5250
Loprinzi PD. Does brain-derived neurotrophic factor mediate the effects of exercise on memory? Phys Sportsmed. 2019;47(4):395–405. https://pubmed.ncbi.nlm.nih.gov/31002004/
5251
Guelpa G. Starvation and purgation in the relief of disease. Br Med J. 1910;2(2597):1050–1. https://www.jstor.org/stable/25292424
5252
Watkins E, Serpell L. The psychological effects of short-term fasting in healthy women. Front Nutr. 2016;3:27. https://pubmed.ncbi.nlm.nih.gov/27597946/
5253
Fond G, Macgregor A, Leboyer M, Michalsen A. Fasting in mood disorders: neurobiology and effectiveness. A review of the literature. Psychiatry Res. 2013;209(3):253–8. https://pubmed.ncbi.nlm.nih.gov/23332541/
5254
Araya AV, Orellana X, Espinoza J. Evaluation of the effect of caloric restriction on serum BDNF in overweight and obese subjects: preliminary evidences. Endocrine. 2008;33(3):300–4. https://pubmed.ncbi.nlm.nih.gov/19012000/
5255
Witte AV, Fobker M, Gellner R, Knecht S, Flöel A. Caloric restriction improves memory in elderly humans. Proc Natl Acad Sci U S A. 2009;106(4):1255–60. https://pubmed.ncbi.nlm.nih.gov/19171901/
5256
Araya AV, Orellana X, Espinoza J. Evaluation of the effect of caloric restriction on serum BDNF in overweight and obese subjects: preliminary evidences. Endocrine. 2008;33(3):300–4. https://pubmed.ncbi.nlm.nih.gov/19012000/
5257
Guimarães LR, Jacka FN, Gama CS, et al. Serum levels of brain-derived neurotrophic factor in schizophrenia on a hypocaloric diet. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(6):1595–8. https://pubmed.ncbi.nlm.nih.gov/18582525/
5258
Karczewska-Kupczewska M, Kowalska I, Nikolajuk A, et al. Circulating brain-derived neurotrophic factor concentration is downregulated by intralipid/heparin infusion or high-fat meal in young healthy male subjects. Diabetes Care. 2012;35(2):358–62. https://pubmed.ncbi.nlm.nih.gov/22210566/
5259
Park HR, Park M, Choi J, Park KY, Chung HY, Lee J. A high-fat diet impairs neurogenesis: involvement of lipid peroxidation and brain-derived neurotrophic factor. Neurosci Lett. 2010;482(3):235–9. https://pubmed.ncbi.nlm.nih.gov/20670674/
5260
Cott A. Controlled fasting treatment for schizophrenia. Orthomolecular Psychiatry. 1974;3(4):301–11. https://isom.ca/wp-content/uploads/2020/01/JOM_1974_03_4_12_Controlled_Fasting_Treatment_for_Schizophrenia.pdf
5261
Beezhold BL, Johnston CS. Restriction of meat, fish, and poultry in omnivores improves mood: a pilot randomized controlled trial. Nutr J. 2012;11:9. https://pubmed.ncbi.nlm.nih.gov/22333737/
5262
Neshatdoust S, Saunders C, Castle SM, et al. High-flavonoid intake induces cognitive improvements linked to changes in serum brain-derived neurotrophic factor: two randomised, controlled trials. Nutr Healthy Aging. 4(1):81–93.; https://pubmed.ncbi.nlm.nih.gov/28035345/
5263
Sánchez-Villegas A, Galbete C, Martinez-González MA, et al. The effect of the Mediterranean diet on plasma brain-derived neurotrophic factor (BDNF) levels: the PREDIMED-NAVARRA randomized trial. Nutr Neurosci. 2011;14(5):195–201. https://pubmed.ncbi.nlm.nih.gov/22005283/
5264
Geethanjali A, Lalitha P, Firdhouse JM. Analysis of curcumin content of turmeric samples from various states of India. Int J Pharma Chem Res. 2016;2(1):55–62. https://www.ijpacr.com/files/19-01-16/114619012016.pdf
5265
Miller KB, Hurst WJ, Payne MJ, et al. Impact of alkalization on the antioxidant and flavanol content of commercial cocoa powders. J Agric Food Chem. 2008;56(18):8527–33. https://pubmed.ncbi.nlm.nih.gov/18710243/
5266
Agricultural Research Service, United States Department of Agriculture. Cocoa, dry powder, unsweetened. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=cocoa&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/169593/nutrients. Published April 1, 2019. Accessed June 30, 2022.; https://fdc.nal.usda.gov/fdc-app.html?query=cocoa&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/169593/nutrients
5267
Neshatdoust S, Saunders C, Castle SM, et al. High-flavonoid intake induces cognitive improvements linked to changes in serum brain-derived neurotrophic factor: two randomised, controlled trials. Nutr Healthy Aging. 4(1):81–93.; https://pubmed.ncbi.nlm.nih.gov/28035345/
5268
Sandberg JC, Björck IME, Nilsson AC. Increased plasma brain-derived neurotrophic factor 10.5 h after intake of whole grain rye-based products in healthy subjects. Nutrients. 2018;10(8):E1097. https://pubmed.ncbi.nlm.nih.gov/30115826/
5269
Intlekofer KA, Berchtold NC, Malvaez M, et al. Exercise and sodium butyrate transform a subthreshold learning event into long-term memory via a brain-derived neurotrophic factor-dependent mechanism. Neuropsychopharmacology. 2013;38(10):2027–34. https://pubmed.ncbi.nlm.nih.gov/23615664/
5270
Gravesteijn E, Mensink RP, Plat J. Effects of nutritional interventions on BDNF concentrations in humans: a systematic review. Nutritional Neuroscience. Published online January 10, 2021:1–12.; https://pubmed.ncbi.nlm.nih.gov/33427118/
5271
Marizzoni M, Cattaneo A, Mirabelli P, et al. Short-chain fatty acids and lipopolysaccharide as mediators between gut dysbiosis and amyloid pathology in Alzheimer’s disease. J Alzheimers Dis. 2020;78(2):683–97. https://pubmed.ncbi.nlm.nih.gov/33074224/
5272
Vinarskaya AK, Balaban PM, Roshchin MV, Zuzina AB. Sodium butyrate as a selective cognitive enhancer for weak or impaired memory. Neurobiol Learn Mem. 2021;180:107414. https://pubmed.ncbi.nlm.nih.gov/33610771/
5273
Fernando WMADB, Martins IJ, Morici M, et al. Sodium butyrate reduces brain amyloid-ß levels and improves cognitive memory performance in an Alzheimer’s disease transgenic mouse model at an early disease stage. J Alzheimers Dis. 2020;74(1):91–9. https://pubmed.ncbi.nlm.nih.gov/31958090/
5274
Govindarajan N, Agis-Balboa RC, Walter J, Sananbenesi F, Fischer A. Sodium butyrate improves memory function in an