Шрифт:
Закладка:
5121
Darbre PD, Mannello F, Exley C. Aluminium and breast cancer: Sources of exposure, tissue measurements and mechanisms of toxicological actions on breast biology. J Inorg Biochem. 2013;128:257–61. https://pubmed.ncbi.nlm.nih.gov/23899626/
5122
Darbre PD. Metalloestrogens: an emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast. J Appl Toxicol. 2006;26(3):191–7. https://pubmed.ncbi.nlm.nih.gov/16489580/
5123
McGrath KG. An earlier age of breast cancer diagnosis related to more frequent use of antiperspirants/deodorants and underarm shaving. Eur J Cancer Prev. 2003;12(6):479–85. https://pubmed.ncbi.nlm.nih.gov/14639125/
5124
Yokel RA, Hicks CL, Florence RL. Aluminum bioavailability from basic sodium aluminum phosphate, an approved food additive emulsifying agent, incorporated in cheese. Food Chem Toxicol. 2008;46(6):2261–6. https://pubmed.ncbi.nlm.nih.gov/18436363/
5125
Al-Ashmawy MAM. Prevalence and public health significance of aluminum residues in milk and some dairy products. J Food Sci. 2011;76(3):T73–6. https://pubmed.ncbi.nlm.nih.gov/21535864/
5126
Gleason A, Bush AI. Iron and ferroptosis as therapeutic targets in Alzheimer’s disease. Neurotherapeutics. 2021;18(1):252–64. https://pubmed.ncbi.nlm.nih.gov/33111259/
5127
Nikseresht S, Bush AI, Ayton S. Treating Alzheimer’s disease by targeting iron. Br J Pharmacol. 2019;176(18):3622–35. https://pubmed.ncbi.nlm.nih.gov/30632143/
5128
Gleason A, Bush AI. Iron and ferroptosis as therapeutic targets in Alzheimer’s disease. Neurotherapeutics. 2021;18(1):252–64. https://pubmed.ncbi.nlm.nih.gov/33111259/
5129
Ayton S, James SA, Bush AI. Nanoscale imaging reveals big role for iron in Alzheimer’s disease. Cell Chem Biol. 2017;24(10):1192–4. https://pubmed.ncbi.nlm.nih.gov/29053948/
5130
Ayton S, Diouf I, Bush AI, Alzheimer’s disease Neuroimaging Initiative. Evidence that iron accelerates Alzheimer’s pathology: a CSF biomarker study. J Neurol Neurosurg Psychiatry. 2018;89(5):456–60. https://pubmed.ncbi.nlm.nih.gov/28939683/
5131
Miller LM, Wang Q, Telivala TP, Smith RJ, Lanzirotti A, Miklossy J. Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with beta-amyloid deposits in Alzheimer’s disease. J Struct Biol. 2006;155(1):30–7. https://pubmed.ncbi.nlm.nih.gov/16325427/
5132
Morris MC, Evans DA, Tangney CC, et al. Dietary copper and high saturated and trans fat intakes associated with cognitive decline. Arch Neurol. 2006;63(8):1085–8. https://pubmed.ncbi.nlm.nih.gov/16908733/
5133
Loef M, Walach H. Copper and iron in Alzheimer’s disease: a systematic review and its dietary implications. Br J Nutr. 2012;107(1):7–19. https://pubmed.ncbi.nlm.nih.gov/21767446/
5134
Liyanage SI, Vilekar P, Weaver DF. Nutrients in Alzheimer’s disease: the interaction of diet, drugs and disease. Can J Neurol Sci. 2019;46(1):23–34. https://pubmed.ncbi.nlm.nih.gov/30688198/
5135
Oleson S, Gonzales MM, Tarumi T, et al. Nutrient intake and cerebral metabolism in healthy middle-aged adults: implications for cognitive aging. Nutr Neurosci. 2017;20(8):489–96. https://pubmed.ncbi.nlm.nih.gov/27237189/
5136
Okereke OI, Rosner BA, Kim DH, et al. Dietary fat types and 4-year cognitive change in community-dwelling older women. Ann Neurol. 2012;72(1):124–34. https://pubmed.ncbi.nlm.nih.gov/22605573/
5137
Cao GY, Li M, Han L, et al. Dietary fat intake and cognitive function among older populations: a systematic review and meta-analysis. J Prev Alzheimers Dis. 2019;6(3):204–11. https://pubmed.ncbi.nlm.nih.gov/31062836/
5138
Barbaresko J, Lellmann AW, Schmidt A, et al. Dietary factors and neurodegenerative disorders: an umbrella review of meta-analyses of prospective studies. Adv Nutr. 2020;11(5):1161–73. https://pubmed.ncbi.nlm.nih.gov/32427314/
5139
Liyanage SI, Vilekar P, Weaver DF. Nutrients in Alzheimer’s disease: the interaction of diet, drugs and disease. Can J Neurol Sci. 2019;46(1):23–34. https://pubmed.ncbi.nlm.nih.gov/30688198/
5140
Kahle L, Krebs-Smith SM, Reedy J, Rodgers AB, Signes C. Identification of Top Food Sources of Various Dietary Components. National Cancer Institute. https://epi.grants.cancer.gov/diet/foodsources. Updated June 8, 2022. Accessed June 30, 2022.; https://epi.grants.cancer.gov/diet/foodsources
5141
Wahl D, Solon-Biet SM, Cogger VC, et al. Aging, lifestyle and dementia. Neurobiol Dis. 2019;130:104481. https://pubmed.ncbi.nlm.nih.gov/31136814/
5142
Verheggen ICM, de Jong JJA, van Boxtel MPJ, et al. Increase in blood-brain barrier leakage in healthy, older adults. Geroscience. 2020;42(4):1183–93. https://pubmed.ncbi.nlm.nih.gov/32601792/
5143
Farrall AJ, Wardlaw JM. Blood-brain barrier: ageing and microvascular disease – systematic review and meta-analysis. Neurobiol Aging. 2009;30(3):337–52. https://pubmed.ncbi.nlm.nih.gov/17869382/
5144
Nation DA, Sweeney MD, Montagne A, et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med. 2019;25(2):270–6. https://pubmed.ncbi.nlm.nih.gov/30643288/
5145
Verheggen ICM, de Jong JJA, van Boxtel MPJ, et al. Increase in blood-brain barrier leakage in healthy, older adults. Geroscience. 2020;42(4):1183–93. https://pubmed.ncbi.nlm.nih.gov/32601792/
5146
Farrall AJ, Wardlaw JM. Blood-brain barrier: ageing and microvascular disease – systematic review and meta-analysis. Neurobiol Aging. 2009;30(3):337–52. https://pubmed.ncbi.nlm.nih.gov/17869382/
5147
Verheggen ICM, de Jong JJA, van Boxtel MPJ, et al. Increase in blood-brain barrier leakage in healthy, older adults. Geroscience. 2020;42(4):1183–93. https://pubmed.ncbi.nlm.nih.gov/32601792/
5148
Gustafson DR, Karlsson C, Skoog I, Rosengren L, Lissner L, Blennow K. Mid-life adiposity factors relate to blood-brain barrier integrity in late life. J Intern Med. 2007;262(6):643–50. https://pubmed.ncbi.nlm.nih.gov/17986201/
5149
Freeman LR, Granholm ACE. Vascular changes in rat hippocampus following a high saturated fat and cholesterol diet. J Cereb Blood Flow Metab. 2012;32(4):643–53. https://pubmed.ncbi.nlm.nih.gov/22108721/
5150
Ghribi O, Golovko MY, Larsen B, Schrag M, Murphy EJ. Deposition of iron and ß-amyloid plaques is associated with cortical cellular damage in rabbits fed with long-term cholesterol-enriched diets. J Neurochem. 2006;99(2):438–49. https://pubmed.ncbi.nlm.nih.gov/17029598/
5151
Takechi R, Galloway S, Pallebage-Gamarallage MM, Lam V, Dhaliwal SS, Mamo JC. Probucol prevents blood – brain barrier dysfunction in wild-type mice induced by saturated fat or cholesterol feeding. Clin Exp Pharmacol Physiol. 2013;40(1):45–52. https://pubmed.ncbi.nlm.nih.gov/23167559/
5152