Онлайн
библиотека книг
Книги онлайн » Медицина » Живи долго! Научный подход к долгой молодости и здоровью - Майкл Грегер

Шрифт:

-
+

Закладка:

Сделать
1 ... 404 405 406 407 408 409 410 411 412 ... 510
Перейти на страницу:
al. ß-Amyloid accumulation in the human brain after one night of sleep deprivation. PNAS. 2018;115(17):4483–8. https://pubmed.ncbi.nlm.nih.gov/29632177/

5215

Kress BT, Iliff JJ, Xia M, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014;76(6):845–61. https://pubmed.ncbi.nlm.nih.gov/25204284/

5216

Simka M, Czaja J, Kowalczyk D. Collapsibility of the internal jugular veins in the lateral decubitus body position: a potential protective role of the cerebral venous outflow against neurodegeneration. Med Hypotheses. 2019;133:109397. https://pubmed.ncbi.nlm.nih.gov/31526984/

5217

Romanella SM, Roe D, Tatti E, et al. The sleep side of aging and Alzheimer’s disease. Sleep Med. 2021;77:209–25. https://pubmed.ncbi.nlm.nih.gov/32912799/

5218

Brusco LI, Márquez M, Cardinali DP. Monozygotic twins with Alzheimer’s disease treated with melatonin: case report. J Pineal Res. 1998;25(4):260–3. https://pubmed.ncbi.nlm.nih.gov/9885996/

5219

Vincent B. Protective roles of melatonin against the amyloid-dependent development of Alzheimer’s disease: a critical review. Pharmacol Res. 2018;134:223–37. https://pubmed.ncbi.nlm.nih.gov/29981776/

5220

Wang YY, Zheng W, Ng CH, Ungvari GS, Wei W, Xiang YT. Meta-analysis of randomized, double-blind, placebo-controlled trials of melatonin in Alzheimer’s disease. Int J Geriatr Psychiatry. 2017;32(1):50–7. https://pubmed.ncbi.nlm.nih.gov/27645169/

5221

Loef M, Walach H. Midlife obesity and dementia: meta-analysis and adjusted forecast of dementia prevalence in the United States and China. Obesity (Silver Spring). 2013;21(1):E51–5. https://pubmed.ncbi.nlm.nih.gov/23401370/

5222

Yang Y, Shields GS, Guo C, Liu Y. Executive function performance in obesity and overweight individuals: a meta-analysis and review. Neurosci Biobehav Rev. 2018;84:225–44. https://pubmed.ncbi.nlm.nih.gov/29203421/

5223

Walther K, Birdsill AC, Glisky EL, Ryan L. Structural brain differences and cognitive functioning related to body mass index in older females. Hum Brain Mapp. 2010;31(7):1052–64. https://pubmed.ncbi.nlm.nih.gov/19998366/

5224

Willette AA, Kapogiannis D. Does the brain shrink as the waist expands? Ageing Res Rev. 2015;20:86–97. https://pubmed.ncbi.nlm.nih.gov/24768742/

5225

Veronese N, Facchini S, Stubbs B, et al. Weight loss is associated with improvements in cognitive function among overweight and obese people: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2017;72:87–94. https://pubmed.ncbi.nlm.nih.gov/27890688/

5226

Veronese N, Facchini S, Stubbs B, et al. Weight loss is associated with improvements in cognitive function among overweight and obese people: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2017;72:87–94. https://pubmed.ncbi.nlm.nih.gov/27890688/

5227

Napoli N, Shah K, Waters DL, Sinacore DR, Qualls C, Villareal DT. Effect of weight loss, exercise, or both on cognition and quality of life in obese older adults. Am J Clin Nutr. 2014;100(1):189–98. https://pubmed.ncbi.nlm.nih.gov/24787497/

5228

Erickson KI, Hillman C, Stillman CM, et al. Physical activity, cognition, and brain outcomes: a review of the 2018 physical activity guidelines. Med Sci Sports Exerc. 2019;51(6):1242–51. https://pubmed.ncbi.nlm.nih.gov/31095081/

5229

Lee J. Effects of aerobic and resistance exercise interventions on cognitive and physiologic adaptations for older adults with mild cognitive impairment: a systematic review and meta-analysis of randomized control trials. Int J Environ Res Public Health. 2020;17(24):E9216. https://pubmed.ncbi.nlm.nih.gov/33317169/

5230

Gomes-Osman J, Cabral DF, Morris TP, et al. Exercise for cognitive brain health in aging: a systematic review for an evaluation of dose. Neurol Clin Pract. 2018;8(3):257–65. https://pubmed.ncbi.nlm.nih.gov/30105166/

5231

Sanders LMJ, Hortobágyi T, la Bastide-van Gemert S, van der Zee EA, van Heuvelen MJG. Dose-response relationship between exercise and cognitive function in older adults with and without cognitive impairment: a systematic review and meta-analysis. PLoS One. 2019;14(1):e0210036. https://pubmed.ncbi.nlm.nih.gov/30629631/

5232

Gomes-Osman J, Cabral DF, Morris TP, et al. Exercise for cognitive brain health in aging: a systematic review for an evaluation of dose. Neurol Clin Pract. 2018;8(3):257–65. https://pubmed.ncbi.nlm.nih.gov/30105166/

5233

Lamb SE, Sheehan B, Atherton N, et al. Dementia And Physical Activity (DAPA) trial of moderate to high intensity exercise training for people with dementia: randomised controlled trial. BMJ. 2018;361:k1675. https://pubmed.ncbi.nlm.nih.gov/29769247/

5234

Ng TKS, Ho CSH, Tam WWS, Kua EH, Ho RCM. Decreased serum brain-derived neurotrophic factor (BDNF) levels in patients with Alzheimer’s disease (AD): a systematic review and meta-analysis. Int J Mol Sci. 2019;20(2):E257. https://pubmed.ncbi.nlm.nih.gov/30634650/

5235

Qin XY, Cao C, Cawley NX, et al. Decreased peripheral brain-derived neurotrophic factor levels in Alzheimer’s disease: a meta-analysis study (N=7277). Mol Psychiatry. 2017;22(2):312–20. https://pubmed.ncbi.nlm.nih.gov/27113997/

5236

Hsu TM, Kanoski SE. Blood-brain barrier disruption: mechanistic links between Western diet consumption and dementia. Front Aging Neurosci. 2014;6:88. https://pubmed.ncbi.nlm.nih.gov/24847262/

5237

Du Y, Wu HT, Qin XY, et al. Postmortem brain, cerebrospinal fluid, and blood neurotrophic factor levels in Alzheimer’s disease: a systematic review and meta-analysis. J Mol Neurosci. 2018;65(3):289–300. https://pubmed.ncbi.nlm.nih.gov/29956088/

5238

Qin XY, Cao C, Cawley NX, et al. Decreased peripheral brain-derived neurotrophic factor levels in Alzheimer’s disease: a meta-analysis study (N=7277). Mol Psychiatry. 2017;22(2):312–20. https://pubmed.ncbi.nlm.nih.gov/27113997/

5239

Ng TKS, Ho CSH, Tam WWS, Kua EH, Ho RCM. Decreased serum brain-derived neurotrophic factor (BDNF) levels in patients with Alzheimer’s disease (AD): a systematic review and meta-analysis. Int J Mol Sci. 2019;20(2):E257. https://pubmed.ncbi.nlm.nih.gov/30634650/

5240

Qin XY, Cao C, Cawley NX, et al. Decreased peripheral brain-derived neurotrophic factor levels in Alzheimer’s disease: a meta-analysis study (N=7277). Mol Psychiatry. 2017;22(2):312–20. https://pubmed.ncbi.nlm.nih.gov/27113997/

5241

Lima Giacobbo B, Doorduin J, Klein HC, Dierckx RAJO, Bromberg E, de Vries EFJ. Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol Neurobiol. 2019;56(5):3295–312. https://pubmed.ncbi.nlm.nih.gov/30117106/

5242

Weinstein G, Beiser AS, Choi SH, et al. Serum brain-derived neurotrophic factor and the risk for dementia: the Framingham Heart Study. JAMA Neurol. 2014;71(1):55–61. https://pubmed.ncbi.nlm.nih.gov/24276217/

5243

Laske C, Stellos K, Hoffmann N, et al. Higher BDNF serum levels predict slower cognitive decline in Alzheimer’s disease patients. Int J

1 ... 404 405 406 407 408 409 410 411 412 ... 510
Перейти на страницу: