Шрифт:
Закладка:
5089
Tsai JH, Huang CF, Lin MN, Chang CE, Chang CC, Lin CL. Taiwanese vegetarians are associated with lower dementia risk: a prospective cohort study. Nutrients. 2022;14(3):588. https://pubmed.ncbi.nlm.nih.gov/35276947/
5090
Giem P, Beeson WL, Fraser GE. The incidence of dementia and intake of animal products: preliminary findings from the Adventist Health Study. Neuroepidemiology. 1993;12(1):28–36. https://pubmed.ncbi.nlm.nih.gov/8327020/
5091
Kivipelto M, Helkala EL, Laakso MP, et al. Apolipoprotein E epsilon4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Ann Intern Med. 2002;137(3):149–55. https://pubmed.ncbi.nlm.nih.gov/12160362/
5092
Deelen J, Evans DS, Arking DE, et al. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nat Commun. 2019;10(1):3669. https://pubmed.ncbi.nlm.nih.gov/31413261/
5093
Rea IM, Dellet M, Mills KI, The ACUME2 Project. Living long and ageing well: is epigenomics the missing link between nature and nurture? Biogerontology. 2016;17(1):33–54. https://pubmed.ncbi.nlm.nih.gov/26133292/
5094
Caruso C, Aiello A, Accardi G, Ciaglia E, Cattaneo M, Puca A. Genetic signatures of centenarians: implications for achieving successful aging. Curr Pharm Des. 2019;25(39):4133–8. https://pubmed.ncbi.nlm.nih.gov/31721694/
5095
Abdullah MMH, Vazquez-Vidal I, Baer DJ, House JD, Jones PJH, Desmarchelier C. Common genetic variations involved in the inter-individual variability of circulating cholesterol concentrations in response to diets: a narrative review of recent evidence. Nutrients. 2021;13(2):695. https://pubmed.ncbi.nlm.nih.gov/33671529/
5096
Sepehrnia B, Kamboh MI, Adams-Campbell LL, et al. Genetic studies of human apolipoproteins. X. The effect of the apolipoprotein E polymorphism on quantitative levels of lipoproteins in Nigerian blacks. Am J Hum Genet. 1989;45(4):586–91. https://pubmed.ncbi.nlm.nih.gov/2491016/
5097
Laufs U, Dent R, Kostenuik PJ, Toth PP, Catapano AL, Chapman MJ. Why is hypercholesterolaemia so prevalent? A view from evolutionary medicine. Eur Heart J. 2019;40(33):2825–30. https://pubmed.ncbi.nlm.nih.gov/30169643/
5098
World Health Organization. The top 10 causes of death. December 9, 2020. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed December 24, 2022.; https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
5099
Chiarini A, Armato U, Hu P, Dal Prà I. Danger-sensing/patten recognition receptors and neuroinflammation in Alzheimer’s disease. Int J Mol Sci. 2020;21(23):E9036. https://pubmed.ncbi.nlm.nih.gov/33261147/
5100
Schmidt R, Schmidt H, Curb JD, Masaki K, White LR, Launer LJ. Early inflammation and dementia: a 25-year follow-up of the Honolulu-Asia Aging Study. Ann Neurol. 2002;52(2):168–74. https://pubmed.ncbi.nlm.nih.gov/12210786/
5101
Jost BC, Grossberg GT. The natural history of Alzheimer’s disease: a brain bank study. J Am Geriatr Soc. 1995;43(11):1248–55. https://pubmed.ncbi.nlm.nih.gov/7594159/
5102
Del Tredici K, Braak H. Neurofibrillary changes of the Alzheimer type in very elderly individuals: neither inevitable nor benign: Commentary on ‘No disease in the brain of a 115-year-old woman.’ Neurobiol Aging. 2008;29(8):1133–6. https://pubmed.ncbi.nlm.nih.gov/18584785/
5103
Galasko DR, Peskind E, Clark CM, et al. Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Arch Neurol. 2012;69(7):836–41. https://pubmed.ncbi.nlm.nih.gov/22431837/
5104
Jensen MK, Cassidy A. Can dietary flavonoids play a role in Alzheimer’s disease risk prevention? Tantalizing population-based data out of Framingham. Am J Clin Nutr. 2020;112(2):241–2. https://pubmed.ncbi.nlm.nih.gov/32359140/
5105
Shishtar E, Rogers GT, Blumberg JB, Au R, Jacques PF. Long-term dietary flavonoid intake and change in cognitive function in the Framingham Offspring cohort. Public Health Nutr. 2020;23(9):1576–88. https://pubmed.ncbi.nlm.nih.gov/32090722/
5106
Tarozzi A, Morroni F, Merlicco A, et al. Neuroprotective effects of cyanidin 3-O-glucopyranoside on amyloid beta (25–35) oligomer-induced toxicity. Neurosci Lett. 2010;473(2):72–6. https://pubmed.ncbi.nlm.nih.gov/20152881/
5107
Hattori M, Sugino E, Minoura K, et al. Different inhibitory response of cyanidin and methylene blue for filament formation of tau microtubule-binding domain. Biochem Biophys Res Commun. 2008;374(1):158–63. https://pubmed.ncbi.nlm.nih.gov/18619417/
5108
Mandel SA, Weinreb O, Amit T, Youdim MB. Molecular mechanisms of the neuroprotective/neurorescue action of multi-target green tea polyphenols. Front Biosci (Schol Ed). 2012;4:581–98. https://pubmed.ncbi.nlm.nih.gov/22202078/
5109
Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13(10):1045–60. https://pubmed.ncbi.nlm.nih.gov/25231526/
5110
Crapper DR, Krishnan SS, Dalton AJ. Brain aluminum distribution in Alzheimer’s disease and experimental neurofibrillary degeneration. Science. 1973;180(4085):511–3. https://pubmed.ncbi.nlm.nih.gov/4735595/
5111
Alfrey AC, LeGendre GR, Kaehny WD. The dialysis encephalopathy syndrome: possible aluminum intoxication. N Engl J Med. 1976;294(4):184–8. https://pubmed.ncbi.nlm.nih.gov/1244532/
5112
Tomljenovic L. Aluminum and Alzheimer’s disease: after a century of controversy, is there a plausible link? J Alzheimers Dis. 2011;23(4):567–98. https://pubmed.ncbi.nlm.nih.gov/21157018/
5113
Lidsky TI. Is the aluminum hypothesis dead? J Occup Environ Med. 2014;56(5 Suppl):S73–9. https://pubmed.ncbi.nlm.nih.gov/24806729/
5114
Perl DP, Moalem S. Aluminum and Alzheimer’s disease, a personal perspective after 25 years. J Alzheimers Dis. 2006;9(3 Suppl):291–300. https://pubmed.ncbi.nlm.nih.gov/17004365/
5115
Lidsky TI. Is the aluminum hypothesis dead? J Occup Environ Med. 2014;56(5 Suppl):S73–9. https://pubmed.ncbi.nlm.nih.gov/24806729/
5116
Virk SA, Eslick GD. Brief report: meta-analysis of antacid use and Alzheimer’s disease: implications for the aluminum hypothesis. Epidemiology. 2015;26(5):769–73. https://pubmed.ncbi.nlm.nih.gov/26098935/
5117
Reinke CM, Breitkreutz J, Leuenberger H. Aluminium in over-the-counter drugs: risks outweigh benefits? Drug Saf. 2003;26(14):1011–25. https://pubmed.ncbi.nlm.nih.gov/14583063/
5118
Celik H, Celik N, Kocyigit A, Dikilitas M. The relationship between plasma aluminum content, lymphocyte DNA damage, and oxidative status in persons using aluminum containers and utensils daily. Clin Biochem. 2012;45(18):1629–33. https://pubmed.ncbi.nlm.nih.gov/22981396/
5119
CRF – code of federal regulations Title 21. U.S Food & Drug Administration. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=350&showFR=1. Updated March 29, 2022. Accessed July 4, 2022.; https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=350&showFR=1
5120
Council of the European Communities.