Шрифт:
Закладка:
3200
Bischoff-Ferrari HA, Dawson-Hughes B, Orav EJ, et al. Monthly high-dose vitamin D treatment for the prevention of functional decline: a randomized clinical trial. JAMA Intern Med. 2016;176(2):175–83. https://pubmed.ncbi.nlm.nih.gov/26747333/
3201
Smith LM, Gallagher JC, Suiter C. Medium doses of vitamin D decrease falls and higher doses of daily vitamin D3 increase falls: a randomized clinical trial. J Steroid Biochem Mol Biol. 2017;173:317–22. https://pubmed.ncbi.nlm.nih.gov/28323044/
3202
Burt LA, Billington EO, Rose MS, Raymond DA, Hanley DA, Boyd SK. Effect of high-dose vitamin D supplementation on volumetric bone density and bone strength: a randomized clinical trial. JAMA. 2019;322(8):736–45. https://pubmed.ncbi.nlm.nih.gov/31454046/
3203
Burt LA, Billington EO, Rose MS, Kremer R, Hanley DA, Boyd SK. Adverse effects of high-dose vitamin D supplementation on volumetric bone density are greater in females than males. J Bone Miner Res. 2020;35(12):2404–14. https://pubmed.ncbi.nlm.nih.gov/31454046/
3204
Iuliano S, Hill TR. Dairy foods and bone health throughout the lifespan: a critical appraisal of the evidence. Br J Nutr. 2019;121(7):763–72. https://pubmed.ncbi.nlm.nih.gov/30638442/
3205
Byberg L, Warensjö-Lemming E. Milk consumption for the prevention of fragility fractures. Nutrients. 2020;12(9):E2720. https://pubmed.ncbi.nlm.nih.gov/32899514/
3206
Willett WC, Ludwig DS. Milk and health. N Engl J Med. 2020;382(7):644–54. https://pubmed.ncbi.nlm.nih.gov/32053300/
3207
Phillip A. Study: milk may not be very good for bones or the body. The Washington Post. https://www.washingtonpost.com/news/to-your-health/wp/2014/10/31/study-milk-may-not-be-very-good-for-bones-or-the-body/. Published October 31, 2014. Accessed March 23, 2022.; https://www.washingtonpost.com/news/to-your-health/wp/2014/10/31/study-milk-may-not-be-very-good-for-bones-or-the-body/
3208
Michaëlsson K, Wolk A, Langenskiöld S, et al. Milk intake and risk of mortality and fractures in women and men: cohort studies. BMJ. 2014;349:g6015. https://pubmed.ncbi.nlm.nih.gov/25352269/
3209
Cui X, Wang L, Zuo P, et al. D-galactose-caused life shortening in Drosophila melanogaster and Musca domestica is associated with oxidative stress. Biogerontology. 2004;5(5):317–25. https://pubmed.ncbi.nlm.nih.gov/15547319/
3210
Cui X, Zuo P, Zhang Q, et al. Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-alpha-lipoic acid. J Neurosci Res. 2006;84(3):647–54. https://pubmed.ncbi.nlm.nih.gov/16555301/
3211
Simoons FJ. A geographic approach to senile cataracts: possible links with milk consumption, lactase activity, and galactose metabolism. Dig Dis Sci. 1982;27(3):257–64. https://pubmed.ncbi.nlm.nih.gov/6804198/
3212
Sella R, Afshari NA. Nutritional effect on age-related cataract formation and progression. Curr Opin Ophthalmol. 2019;30(1):63–9. https://pubmed.ncbi.nlm.nih.gov/30320615/
3213
Ding M, Li J, Qi L, et al. Associations of dairy intake with risk of mortality in women and men: three prospective cohort studies. BMJ. 2019;367:l6204. https://pubmed.ncbi.nlm.nih.gov/31776125/
3214
Grey A, Bolland M. Web of industry, advocacy, and academia in the management of osteoporosis. BMJ. 2015;351:h3170. https://pubmed.ncbi.nlm.nih.gov/26198274/
3215
Byberg L, Warensjö-Lemming E. Milk consumption for the prevention of fragility fractures. Nutrients. 2020;12(9):E2720. https://pubmed.ncbi.nlm.nih.gov/32899514/
3216
Willett WC, Ludwig DS. Milk and health. N Engl J Med. 2020;382(7):644–54. https://pubmed.ncbi.nlm.nih.gov/32053300/
3217
Dai Z, Kroeger CM, Lawrence M, Scrinis G, Bero L. Comparison of methodological quality between the 2007 and 2019 Canadian dietary guidelines. Public Health Nutr. 2020;23(16):2879–85. https://pubmed.ncbi.nlm.nih.gov/32552917/
3218
Ausman LM, Oliver LM, Goldin BR, Woods MN, Gorbach SL, Dwyer JT. Estimated net acid excretion inversely correlates with urine pH in vegans, lacto-ovo vegetarians, and omnivores. J Ren Nutr. 2008;18(5):456–65. https://pubmed.ncbi.nlm.nih.gov/18721741/
3219
Kerstetter JE, O’Brien KO, Caseria DM, Wall DE, Insogna KL. The impact of dietary protein on calcium absorption and kinetic measures of bone turnover in women. J Clin Endocrinol Metab. 2005;90(1):26–31. https://pubmed.ncbi.nlm.nih.gov/15546911/
3220
Dawson-Hughes B, Harris SS, Ceglia L. Alkaline diets favor lean tissue mass in older adults. Am J Clin Nutr. 2008;87(3):662–5. https://pubmed.ncbi.nlm.nih.gov/18326605/
3221
Groesbeck DK, Bluml RM, Kossoff EH. Long-term use of the ketogenic diet in the treatment of epilepsy. Dev Med Child Neurol. 2006;48(12):978–81. https://pubmed.ncbi.nlm.nih.gov/17109786/
3222
Heikura IA, Burke LM, Hawley JA, et al. A short-term ketogenic diet impairs markers of bone health in response to exercise. Front Endocrinol (Lausanne). 2020;10:880. https://pubmed.ncbi.nlm.nih.gov/32038477/
3223
Simm PJ, Bicknell-Royle J, Lawrie J, et al. The effect of the ketogenic diet on the developing skeleton. Epilepsy Res. 2017;136:62–6. https://pubmed.ncbi.nlm.nih.gov/28778055/
3224
Bergqvist AG, Schall JI, Stallings VA, Zemel BS. Progressive bone mineral content loss in children with intractable epilepsy treated with the ketogenic diet. Am J Clin Nutr. 2008;88(6):1678–84. https://pubmed.ncbi.nlm.nih.gov/19064531/
3225
Yancy WS, Olsen MK, Dudley T, Westman EC. Acid-base analysis of individuals following two weight loss diets. Eur J Clin Nutr. 2007;61(12):1416–22. https://pubmed.ncbi.nlm.nih.gov/17299473/
3226
Gunaratnam K, Vidal C, Gimble JM, Duque G. Mechanisms of palmitate-induced lipotoxicity in human osteoblasts. Endocrinology. 2014;155(1):108–16. https://pubmed.ncbi.nlm.nih.gov/24169557/
3227
Mozaffari H, Djafarian K, Mofrad MD, Shab-Bidar S. Dietary fat, saturated fatty acid, and monounsaturated fatty acid intakes and risk of bone fracture: a systematic review and meta-analysis of observational studies. Osteoporos Int. 2018;29(9):1949–61. https://pubmed.ncbi.nlm.nih.gov/29947872/
3228
Frassetto L, Sebastian A. Age and systemic acid-base equilibrium: analysis of published data. J Gerontol A Biol Sci Med Sci. 1996;51(1):B91–9. https://pubmed.ncbi.nlm.nih.gov/8548506/
3229
Frassetto L, Banerjee T, Powe N, Sebastian A. Acid balance, dietary acid load, and bone effects – a controversial subject. Nutrients. 2018;10(4):517. https://pubmed.ncbi.nlm.nih.gov/29690515/
3230
Cao JJ, Whigham LD, Jahns L. Depletion and repletion of fruit and vegetable intake alters serum bone turnover markers: a 28-week single-arm experimental feeding intervention. Br J Nutr. 2018;120(5):500–7. https://pubmed.ncbi.nlm.nih.gov/30022739/
3231
Hayhoe RPG, Abdelhamid A, Luben RN, Khaw KT, Welch AA.