Шрифт:
Закладка:
8141
Okur MN, Mao B, Kimura R, et al. Short-term NAD+ supplementation prevents hearing loss in mouse models of Cockayne syndrome. NPJ Aging Mech Dis. 2020;6:1. https://pubmed.ncbi.nlm.nih.gov/31934345/
8142
Yang Q, Cong L, Wang Y, et al. Increasing ovarian NAD+ levels improve mitochondrial functions and reverse ovarian aging. Free Radic Biol Med. 2020;156:1–10. https://pubmed.ncbi.nlm.nih.gov/32492457/
8143
Gong B, Pan Y, Vempati P, et al. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-¿ coactivator 1a regulated ß-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiol Aging. 2013;34(6):1581–8. https://pubmed.ncbi.nlm.nih.gov/23312803/
8144
Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47. https://pubmed.ncbi.nlm.nih.gov/29514064/
8145
de Picciotto NE, Gano LB, Johnson LC, et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell. 2016;15(3):522–30. https://pubmed.ncbi.nlm.nih.gov/26970090/
8146
Yao Z, Yang W, Gao Z, Jia P. Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease. Neurosci Lett. 2017;647:133–40. https://pubmed.ncbi.nlm.nih.gov/28330719/
8147
Ryu D, Zhang H, Ropelle ER, et al. NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation. Sci Transl Med. 2016;8(361):361ra139. https://pubmed.ncbi.nlm.nih.gov/27798264/
8148
Takeda K, Okumura K. Nicotinamide mononucleotide augments the cytotoxic activity of natural killer cells in young and elderly mice. Biomed Res. 2021;42(5):173–9. https://pubmed.ncbi.nlm.nih.gov/34544993/
8149
Tran MT, Zsengeller ZK, Berg AH, et al. PGC1a drives NAD biosynthesis linking oxidative metabolism to renal protection. Nature. 2016;531(7595):528–32. https://pubmed.ncbi.nlm.nih.gov/26982719/
8150
Mukherjee S, Chellappa K, Moffitt A, et al. Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration. Hepatology. 2017;65(2):616–30. https://pubmed.ncbi.nlm.nih.gov/27809334/
8151
Gomes AP, Price NL, Ling AJY, et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 2013;155(7):1624–38. https://pubmed.ncbi.nlm.nih.gov/24360282/
8152
Dutta S, Sengupta P. Men and mice: relating their ages. Life Sci. 2016;152:244–8. https://pubmed.ncbi.nlm.nih.gov/26596563/
8153
Giblin W, Skinner ME, Lombard DB. Sirtuins: guardians of mammalian healthspan. Trends Genet. 2014;30(7):271–86. https://pubmed.ncbi.nlm.nih.gov/24877878/
8154
Anderson RM, Bitterman KJ, Wood JG, et al. Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J Biol Chem. 2002;277(21):18881–90. https://pubmed.ncbi.nlm.nih.gov/11884393/
8155
Mouchiroud L, Houtkooper RH, Moullan N, et al. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell. 2013;154(2):430–41. https://pubmed.ncbi.nlm.nih.gov/23870130/
8156
Zhang H, Ryu D, Wu Y, et al. NAD¿ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science. 2016;352(6292):1436–43. https://pubmed.ncbi.nlm.nih.gov/27127236/
8157
Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47. https://pubmed.ncbi.nlm.nih.gov/29514064/
8158
Conlon N, Ford D. A systems-approach to NAD+ restoration. Biochem Pharmacol. 2022;198:114946. https://pubmed.ncbi.nlm.nih.gov/35134387/
8159
Bogan KL, Brenner C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr. 2008;28:115–30. https://pubmed.ncbi.nlm.nih.gov/18429699/
8160
Liu L, Su X, Quinn WJ, et al. Quantitative analysis of NAD synthesis-breakdown fluxes. Cell Metab. 2018;27(5):1067–80.e5. https://pubmed.ncbi.nlm.nih.gov/29685734/
8161
Shats I, Williams JG, Liu J, et al. Bacteria boost mammalian host NAD metabolism by engaging the deamidated biosynthesis pathway. Cell Metab. 2020;31(3):564–79.e7. https://pubmed.ncbi.nlm.nih.gov/32130883/
8162
Romani M, Hofer DC, Katsyuba E, Auwerx J. Niacin: an old lipid drug in a new NAD+ dress. J Lipid Res. 2019;60(4):741–6. https://pubmed.ncbi.nlm.nih.gov/30782960/
8163
Gasperi V, Sibilano M, Savini I, Catani MV. Niacin in the central nervous system: an update of biological aspects and clinical applications. Int J Mol Sci. 2019;20(4):974. https://pubmed.ncbi.nlm.nih.gov/30813414/
8164
Altschul R, Hoffer A. Effects of salts of nicotinic acid on serum cholesterol. Br Med J. 1958;2(5098):713–4. https://pubmed.ncbi.nlm.nih.gov/13572876/
8165
Schandelmaier S, Briel M, Saccilotto R, et al. Niacin for primary and secondary prevention of cardiovascular events. Cochrane Database Syst Rev. 2017;6(6):CD009744. https://pubmed.ncbi.nlm.nih.gov/28616955/
8166
Canner PL, Berge KG, Wenger NK, et al. Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J Am Coll Cardiol. 1986;8(6):1245–55. https://pubmed.ncbi.nlm.nih.gov/3782631/
8167
Boden WE, Probstfield JL, Anderson T, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365(24):2255–67. https://pubmed.ncbi.nlm.nih.gov/22085343/
8168
Landray MJ, Haynes R, Hopewell JC, et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371(3):203–12. https://pubmed.ncbi.nlm.nih.gov/25014686/
8169
Schandelmaier S, Briel M, Saccilotto R, et al. Niacin for primary and secondary prevention of cardiovascular events. Cochrane Database Syst Rev. 2017;6(6):CD009744. https://pubmed.ncbi.nlm.nih.gov/28616955/
8170
Superko HR, Zhao XQ, Hodis HN, Guyton JR. Niacin and heart disease prevention: engraving its tombstone is a mistake. J Clin Lipidol. 2017;11(6):1309–17. https://pubmed.ncbi.nlm.nih.gov/28927896/
8171
Krumholz HM. Niacin: time to believe outcomes over surrogate outcomes: if not now, when? Circ Cardiovasc Qual Outcomes. 2016;9(4):343–4. https://pubmed.ncbi.nlm.nih.gov/27407051/
8172
Knopp RH, Ginsberg J, Albers JJ, et al. Contrasting effects of unmodified and time-release forms of niacin on lipoproteins in hyperlipidemic subjects: clues to mechanism of action of niacin. Metabolism. 1985;34(7):642–50. https://pubmed.ncbi.nlm.nih.gov/3925290/
8173
Goldie C, Taylor AJ, Nguyen P, McCoy C, Zhao XQ, Preiss D. Niacin therapy and the risk of new-onset diabetes: a meta-analysis of randomised controlled trials. Heart. 2016;102(3):198–203. https://pubmed.ncbi.nlm.nih.gov/26370223/
8174
Lloyd-Jones DM, Morris PB, Ballantyne CM,