Шрифт:
Закладка:
8206
Parsons RB, Smith ML, Williams AC, Waring RH, Ramsden DB. Expression of nicotinamide N-methyltransferase (E.C. 2.1.1.1) in the Parkinsonian brain. J Neuropathol Exp Neurol. 2002;61(2):111–24. https://pubmed.ncbi.nlm.nih.gov/11853016/
8207
Li D, Tian YJ, Guo J, et al. Nicotinamide supplementation induces detrimental metabolic and epigenetic changes in developing rats. Br J Nutr. 2013;110(12):2156–64. https://pubmed.ncbi.nlm.nih.gov/23768418/
8208
Kang-Lee YA, McKee RW, Wright SM, Swendseid ME, Jenden DJ, Jope RS. Metabolic effects of nicotinamide administration in rats. J Nutr. 1983;113(2):215–21. https://pubmed.ncbi.nlm.nih.gov/6218261/
8209
Hwang ES, Song SB. Possible adverse effects of high-dose nicotinamide: mechanisms and safety assessment. Biomolecules. 2020;10(5):687. https://pubmed.ncbi.nlm.nih.gov/32365524/
8210
Tian YJ, Li D, Ma Q, et al. Excess nicotinamide increases plasma serotonin and histamine levels. Sheng Li Xue Bao. 2013;65(1):33–8. https://pubmed.ncbi.nlm.nih.gov/23426511/
8211
Sun WP, Li D, Lun YZ, et al. Excess nicotinamide inhibits methylation-mediated degradation of catecholamines in normotensives and hypertensives. Hypertens Res. 2012;35(2):180–5. https://pubmed.ncbi.nlm.nih.gov/21918528/
8212
Tinelli C, Di Pino A, Ficulle E, Marcelli S, Feligioni M. Hyperhomocysteinemia as a risk factor and potential nutraceutical target for certain pathologies. Front Nutr. 2019;6:49. https://pubmed.ncbi.nlm.nih.gov/31069230/
8213
Avalos JL, Bever KM, Wolberger C. Mechanism of sirtuin inhibition by nicotinamide: altering the NAD+ cosubstrate specificity of a Sir2 enzyme. Mol Cell. 2005;17(6):855–68. https://pubmed.ncbi.nlm.nih.gov/15780941/
8214
Mitchell SJ, Bernier M, Aon MA, et al. Nicotinamide improves aspects of healthspan, but not lifespan, in mice. Cell Metab. 2018;27(3):667–76.e4. https://pubmed.ncbi.nlm.nih.gov/29514072/
8215
Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast Sir2 and human SIRT1. J Biol Chem. 2002;277(47):45099–107. https://pubmed.ncbi.nlm.nih.gov/12297502/
8216
Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47. https://pubmed.ncbi.nlm.nih.gov/29514064/
8217
Cantó C, Houtkooper RH, Pirinen E, et al. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012;15(6):838–47. https://pubmed.ncbi.nlm.nih.gov/22682224/
8218
Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47. https://pubmed.ncbi.nlm.nih.gov/29514064/
8219
Conlon N, Ford D. A systems-approach to NAD+ restoration. Biochem Pharmacol. 2022;198:114946. https://pubmed.ncbi.nlm.nih.gov/35134387/
8220
Conze D, Brenner C, Kruger CL. Safety and metabolism of long-term administration of NIAGEN (Nicotinamide riboside chloride) in a randomized, double-blind, placebo-controlled clinical trial of healthy overweight adults. Sci Rep. 2019;9(1):9772. https://pubmed.ncbi.nlm.nih.gov/31278280/
8221
Elhassan YS, Kluckova K, Fletcher RS, et al. Nicotinamide riboside augments the aged human skeletal muscle NAD+ metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep. 2019;28(7):1717–28.e6. https://pubmed.ncbi.nlm.nih.gov/31412242/
8222
Dollerup OL, Chubanava S, Agerholm M, et al. Nicotinamide riboside does not alter mitochondrial respiration, content or morphology in skeletal muscle from obese and insulin-resistant men. J Physiol. 2020;598(4):731–54. https://pubmed.ncbi.nlm.nih.gov/31710095/
8223
Remie CME, Roumans KHM, Moonen MPB, et al. Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans. Am J Clin Nutr. 2020;112(2):413–26. https://pubmed.ncbi.nlm.nih.gov/32320006/
8224
Stocks B, Ashcroft SP, Joanisse S, et al. Nicotinamide riboside supplementation does not alter whole-body or skeletal muscle metabolic responses to a single bout of endurance exercise. J Physiol. 2021;599(5):1513–31. https://pubmed.ncbi.nlm.nih.gov/33492681/
8225
Mehmel M, Jovanovic N, Spitz U. Nicotinamide riboside – the current state of research and therapeutic uses. Nutrients. 2020;12(6):1616. https://pubmed.ncbi.nlm.nih.gov/32486488/
8226
Katsyuba E, Romani M, Hofer D, Auwerx J. NAD+ homeostasis in health and disease. Nat Metab. 2020;2(1):9–31. https://pubmed.ncbi.nlm.nih.gov/32694684/
8227
Martens CR, Denman BA, Mazzo MR, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat Commun. 2018;9(1):1286. https://pubmed.ncbi.nlm.nih.gov/29599478/
8228
Dolopikou CF, Kourtzidis IA, Margaritelis NV, et al. Acute nicotinamide riboside supplementation improves redox homeostasis and exercise performance in old individuals: a double-blind cross-over study. Eur J Nutr. 2020;59(2):505–15. https://pubmed.ncbi.nlm.nih.gov/30725213/
8229
Martens CR, Denman BA, Mazzo MR, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat Commun. 2018;9(1):1286. https://pubmed.ncbi.nlm.nih.gov/29599478/
8230
Dolopikou CF, Kourtzidis IA, Margaritelis NV, et al. Acute nicotinamide riboside supplementation improves redox homeostasis and exercise performance in old individuals: a double-blind cross-over study. Eur J Nutr. 2020;59(2):505–15. https://pubmed.ncbi.nlm.nih.gov/30725213/
8231
Elhassan YS, Kluckova K, Fletcher RS, et al. Nicotinamide riboside augments the aged human skeletal muscle NAD+ metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep. 2019;28(7):1717–28.e6. https://pubmed.ncbi.nlm.nih.gov/31412242/
8232
Remie CME, Roumans KHM, Moonen MPB, et al. Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans. Am J Clin Nutr. 2020;112(2):413–26. https://pubmed.ncbi.nlm.nih.gov/32320006/
8233
Martens CR, Denman BA, Mazzo MR, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat Commun. 2018;9(1):1286. https://pubmed.ncbi.nlm.nih.gov/29599478/
8234
Dolopikou CF, Kourtzidis IA, Margaritelis NV, et al. Acute nicotinamide riboside supplementation improves redox homeostasis and exercise performance in old individuals: a double-blind cross-over study. Eur J Nutr. 2020;59(2):505–15. https://pubmed.ncbi.nlm.nih.gov/30725213/
8235
Remie CME, Roumans KHM, Moonen MPB, et al. Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans. Am J Clin Nutr. 2020;112(2):413–26. https://pubmed.ncbi.nlm.nih.gov/32320006/
8236
Martens CR, Denman BA, Mazzo MR, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat Commun.