Онлайн
библиотека книг
Книги онлайн » Медицина » Живи долго! Научный подход к долгой молодости и здоровью - Майкл Грегер

Шрифт:

-
+

Закладка:

Сделать
1 ... 312 313 314 315 316 317 318 319 320 ... 510
Перейти на страницу:
Health and Human Development. Lactose intolerance: information for health care providers. U.S. Dept. of Health and Human Services, National Institutes of Health. http://purl.access.gpo.gov/GPO/LPS80173. Published January 2006. Accessed January 6, 2022.; https://purl.access.gpo.gov/GPO/LPS80173

2295

Bertron P, Barnard ND, Mills M. Racial bias in federal nutrition policy, part I: the public health implications of variations in lactase persistence. J Natl Med Assoc. 1999;91(3):151–7. https://pubmed.ncbi.nlm.nih.gov/10203917/

2296

Jacobs ET, Foote JA, Kohler LN, Skiba MB, Thomson CA. Re-examination of dairy as a single commodity in US dietary guidance. Nutr Rev. 2020;78(3):225–34. https://pubmed.ncbi.nlm.nih.gov/31904838/

2297

Jacobs ET, Foote JA, Kohler LN, Skiba MB, Thomson CA. Re-examination of dairy as a single commodity in US dietary guidance. Nutr Rev. 2020;78(3):225–34. https://pubmed.ncbi.nlm.nih.gov/31904838/

2298

Godlee F, Malone R, Timmis A, et al. Journal policy on research funded by the tobacco industry. Thorax. 2013;68(12):1090–1. https://pubmed.ncbi.nlm.nih.gov/24130154/

2299

Yi M, Wu X, Zhuang W, et al. Tea consumption and health outcomes: umbrella review of meta-analyses of observational studies in humans. Mol Nutr Food Res. 2019;63(16):e1900389. https://pubmed.ncbi.nlm.nih.gov/31216091/

2300

Zhang L, Jie G, Zhang J, Zhao B. Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress. Free Radic Biol Med. 2009;46(3):414–21. https://pubmed.ncbi.nlm.nih.gov/19061950/

2301

Niu Y, Na L, Feng R, et al. The phytochemical, EGCG, extends lifespan by reducing liver and kidney function damage and improving age-associated inflammation and oxidative stress in healthy rats. Aging Cell. 2013;12(6):1041–9. https://pubmed.ncbi.nlm.nih.gov/23834676/

2302

Yi M, Wu X, Zhuang W, et al. Tea consumption and health outcomes: umbrella review of meta-analyses of observational studies in humans. Mol Nutr Food Res. 2019;63(16):e1900389. https://pubmed.ncbi.nlm.nih.gov/31216091/

2303

Spiegelhalter D. Using speed of ageing and “microlives” to communicate the effects of lifetime habits and environment. BMJ. 2012;345:e8223. https://pubmed.ncbi.nlm.nih.gov/23247978/

2304

Yi M, Wu X, Zhuang W, et al. Tea consumption and health outcomes: umbrella review of meta-analyses of observational studies in humans. Mol Nutr Food Res. 2019;63(16):e1900389. https://pubmed.ncbi.nlm.nih.gov/31216091/

2305

Jochmann N, Lorenz M, von Krosigk A, et al. The efficacy of black tea in ameliorating endothelial function is equivalent to that of green tea. Br J Nutr. 2008;99(4):863–8. https://pubmed.ncbi.nlm.nih.gov/17916273/

2306

Lorenz M, Jochmann N, von Krosigk A, et al. Addition of milk prevents vascular protective effects of tea. Eur Heart J. 2007;28(2):219–23. https://pubmed.ncbi.nlm.nih.gov/17213230/

2307

Ahmad AF, Rich L, Koch H, et al. Effect of adding milk to black tea on vascular function in healthy men and women: a randomised controlled crossover trial. Food Funct. 2018;9(12):6307–14. https://pubmed.ncbi.nlm.nih.gov/30411751/

2308

Serafini M, Testa MF, Villaño D, et al. Antioxidant activity of blueberry fruit is impaired by association with milk. Free Radic Biol Med. 2009;46(6):769–74. https://pubmed.ncbi.nlm.nih.gov/19135520/

2309

Serafini M, Bugianesi R, Maiani G, Valtuena S, De Santis S, Crozier A. Plasma antioxidants from chocolate. Nature. 2003;424(6952):1013. https://pubmed.ncbi.nlm.nih.gov/12944955/

2310

Duarte GS, Farah A. Effect of simultaneous consumption of milk and coffee on chlorogenic acids’ bioavailability in humans. J Agric Food Chem. 2011;59(14):7925–31. https://pubmed.ncbi.nlm.nih.gov/21627318/

2311

Получают из побегов аспалатуса линейного, кустарника из семейства бобовых. – Примеч. ред.

2312

Chen W, Sudji IR, Wang E, Joubert E, van Wyk BE, Wink M. Ameliorative effect of aspalathin from rooibos (Aspalathus linearis) on acute oxidative stress in Caenorhabditis elegans. Phytomedicine. 2013;20(3–4):380–6. https://pubmed.ncbi.nlm.nih.gov/23218401/

2313

Yoo KM, Hwang IK, Moon B. Comparative flavonoids contents of selected herbs and associations of their radical scavenging activity with antiproliferative actions in V79–4 cells. J Food Sci. 2009;74(6):C419–25. https://pubmed.ncbi.nlm.nih.gov/19723177/

2314

Damiani E, Carloni P, Rocchetti G, et al. Impact of cold versus hot brewing on the phenolic profile and antioxidant capacity of rooibos (Aspalathus linearis) herbal tea. Antioxidants (Basel). 2019;8(10):499. https://pubmed.ncbi.nlm.nih.gov/31640245/

2315

Cleverdon R, Elhalaby Y, McAlpine MD, Gittings W, Ward WE. Total polyphenol content and antioxidant capacity of tea bags: comparison of black, green, red rooibos, chamomile and peppermint over different steep times. Beverages. 2018;4(1):15. https://www.mdpi.com/2306-5710/4/1/15

2316

Peterson J, Dwyer J, Jacques P, Rand W, Prior R, Chui K. Tea variety and brewing techniques influence flavonoid content of black tea. J Food Compost Anal. 2004;17(3–4):397–405. https://www.sciencedirect.com/science/article/abs/pii/S0889157504000614

2317

Saklar S, Ertas E, Ozdemir IS, Karadeniz B. Effects of different brewing conditions on catechin content and sensory acceptance in Turkish green tea infusions. J Food Sci Technol. 2015;52(10):6639–46. https://pubmed.ncbi.nlm.nih.gov/26396411/

2318

Pérez-Burillo S, Giménez R, Rufián-Henares JA, Pastoriza S. Effect of brewing time and temperature on antioxidant capacity and phenols of white tea: relationship with sensory properties. Food Chem. 2018;248:111–8. https://pubmed.ncbi.nlm.nih.gov/29329833/

2319

Nikniaz Z, Mahdavi R, Ghaemmaghami SJ, Yagin NL, Nikniaz L. Effect of different brewing times on antioxidant activity and polyphenol content of loosely packed and bagged black teas (Camellia sinensis L.). Avicenna J Phytomed. 2016;6(3):313–21. https://pubmed.ncbi.nlm.nih.gov/27462554/

2320

Malik VS, Li Y, Pan A, et al. Long-term consumption of sugar-sweetened and artificially sweetened beverages and risk of mortality in US adults. Circulation. 2019;139(18):2113–25. https://pubmed.ncbi.nlm.nih.gov/30882235/

2321

Zhang YB, Jiang YW, Chen JX, Xia PF, Pan A. Association of consumption of sugar-sweetened beverages or artificially sweetened beverages with mortality: a systematic review and dose-response meta-analysis of prospective cohort studies. Adv Nutr. 2021;12(2):374–83. https://pubmed.ncbi.nlm.nih.gov/33786594/

2322

Huang C, Huang J, Tian Y, Yang X, Gu D. Sugar sweetened beverages consumption and risk of coronary heart disease: a meta-analysis of prospective studies. Atherosclerosis. 2014;234(1):11–6. https://pubmed.ncbi.nlm.nih.gov/24583500/

2323

Imamura

1 ... 312 313 314 315 316 317 318 319 320 ... 510
Перейти на страницу: