Онлайн
библиотека книг
Книги онлайн » Медицина » Живи долго! Научный подход к долгой молодости и здоровью - Майкл Грегер

Шрифт:

-
+

Закладка:

Сделать
1 ... 287 288 289 290 291 292 293 294 295 ... 510
Перейти на страницу:
class="title6">

1510

McCarty MF, Barroso-Aranda J, Contreras F. The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy. Med Hypotheses. 2009;72(2):125–8. https://pubmed.ncbi.nlm.nih.gov/18789600/

1511

Scudellari M. Myths that will not die. Nature. 2015;528(7582):322–5. https://pubmed.ncbi.nlm.nih.gov/26672537/

1512

Stuart JA, Maddalena LA, Merilovich M, Robb EL. A midlife crisis for the mitochondrial free radical theory of aging. Longev Healthspan. 2014;3(1):4. https://pubmed.ncbi.nlm.nih.gov/24690218/

1513

Golubev A, Hanson AD, Gladyshev VN. A tale of two concepts: harmonizing the free radical and antagonistic pleiotropy theories of aging. Antioxid Redox Signal. 2018;29(10):1003–17. https://pubmed.ncbi.nlm.nih.gov/28874059/

1514

Bjelakovic G, Nikolova D, Gluud C. Antioxidant supplements and mortality. Curr Opin Clin Nutr Metab Care. 2014;17(1):40–4. https://pubmed.ncbi.nlm.nih.gov/24241129/

1515

Bjelakovic G, Nikolova D, Simonetti RG, Gluud C. Antioxidant supplements for prevention of gastrointestinal cancers: a systematic review and meta-analysis. Lancet. 2004;364(9441):1219–28. https://pubmed.ncbi.nlm.nih.gov/15464182/

1516

Serafini M, Jakszyn P, Luján-Barroso L, et al. Dietary total antioxidant capacity and gastric cancer risk in the European prospective investigation into cancer and nutrition study. Int J Cancer. 2012;131(4):E544–54. https://pubmed.ncbi.nlm.nih.gov/22072493/

1517

Jacobs DR, Tapsell LC. Food synergy: the key to a healthy diet. Proc Nutr Soc. 2013;72(2):200–6. https://pubmed.ncbi.nlm.nih.gov/23312372/

1518

Cömert ED, Gökmen V. Evolution of food antioxidants as a core topic of food science for a century. Food Res Int. 2018;105:76–93. https://pubmed.ncbi.nlm.nih.gov/29433271/

1519

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

1520

Chial H, Craig J. mtDNA and mitochondrial diseases. Nature Education. 2008;1(1):217. https://www.nature.com/scitable/topicpage/mtdna-and-mitochondrial-diseases-903/

1521

Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017;168(4):644–56. https://pubmed.ncbi.nlm.nih.gov/28187286/

1522

Patel J, Baptiste BA, Kim E, Hussain M, Croteau DL, Bohr VA. DNA damage and mitochondria in cancer and aging. Carcinogenesis. 2020;41(12):1625–34. https://pubmed.ncbi.nlm.nih.gov/33146705/

1523

Soares JP, Cortinhas A, Bento T, et al. Aging and DNA damage in humans: a meta-analysis study. Aging (Albany NY). 2014;6(6):432–9. https://pubmed.ncbi.nlm.nih.gov/25140379/

1524

Belenguer-Varea Á, Tarazona-Santabalbina FJ, Avellana-Zaragoza JA, Martínez-Reig M, Mas-Bargues C, Inglés M. Oxidative stress and exceptional human longevity: systematic review. Free Radic Biol Med. 2020;149:51–63. https://pubmed.ncbi.nlm.nih.gov/31550529/

1525

Patel J, Baptiste BA, Kim E, Hussain M, Croteau DL, Bohr VA. DNA damage and mitochondria in cancer and aging. Carcinogenesis. 2020;41(12):1625–34. https://pubmed.ncbi.nlm.nih.gov/33146705/

1526

Yousefzadeh M, Henpita C, Vyas R, Soto-Palma C, Robbins P, Niedernhofer L. DNA damage – how and why we age? Elife. 2021;10:e62852. https://pubmed.ncbi.nlm.nih.gov/33512317/

1527

Liochev SI. Reflections on the theories of aging, of oxidative stress, and of science in general. Is it time to abandon the free radical (oxidative stress) theory of aging? Antioxid Redox Signal. 2015;23(3):187–207. https://pubmed.ncbi.nlm.nih.gov/24949668/

1528

Belenguer-Varea Á, Tarazona-Santabalbina FJ, Avellana-Zaragoza JA, Martínez-Reig M, Mas-Bargues C, Inglés M. Oxidative stress and exceptional human longevity: systematic review. Free Radic Biol Med. 2020;149:51–63. https://pubmed.ncbi.nlm.nih.gov/31550529/

1529

Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757–72. https://pubmed.ncbi.nlm.nih.gov/29731617/

1530

Belenguer-Varea Á, Tarazona-Santabalbina FJ, Avellana-Zaragoza JA, Martínez-Reig M, Mas-Bargues C, Inglés M. Oxidative stress and exceptional human longevity: systematic review. Free Radic Biol Med. 2020;149:51–63. https://pubmed.ncbi.nlm.nih.gov/31550529/

1531

Salmon AB, Richardson A, Pérez VI. Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med. 2010;48(5):642–55. https://pubmed.ncbi.nlm.nih.gov/20036736/

1532

Edrey YH, Salmon AB. Revisiting an age-old question regarding oxidative stress. Free Radic Biol Med. 2014;71:368–78. https://pubmed.ncbi.nlm.nih.gov/24704971/

1533

Cannon G. Nutritional science for this century. Public Health Nutr. 2005;8(4):344–7. https://pubmed.ncbi.nlm.nih.gov/15975178/

1534

Andrews P. Last common ancestor of apes and humans: morphology and environment. FPR. 2020;91(2):122–48. https://pubmed.ncbi.nlm.nih.gov/31533109/

1535

Milton K. Nutritional characteristics of wild primate foods: do the diets of our closest living relatives have lessons for us? Nutrition. 1999;15(6):488–98. https://pubmed.ncbi.nlm.nih.gov/10378206/

1536

Milton K. Back to basics: why foods of wild primates have relevance for modern human health. Nutrition. 2000;16(7–8):480–3. https://pubmed.ncbi.nlm.nih.gov/10906529/

1537

Milton K. Hunter-gatherer diets: a different perspective. Am J Clin Nutr. 2000;71(3):665–7. https://pubmed.ncbi.nlm.nih.gov/10702155/

1538

Milton K. Micronutrient intakes of wild primates: are humans different? Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):47–59. https://pubmed.ncbi.nlm.nih.gov/14527629/

1539

Benzie IFF. Evolution of dietary antioxidants. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):113–26. https://pubmed.ncbi.nlm.nih.gov/14527634/

1540

Milton K. Nutritional characteristics of wild primate foods: do the diets of our closest living relatives have lessons for us? Nutrition. 1999;15(6):488–98. https://pubmed.ncbi.nlm.nih.gov/10378206/

1541

Benzie IFF. Evolution of dietary antioxidants. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):113–26. https://pubmed.ncbi.nlm.nih.gov/14527634/

1542

Milton K. Nutritional characteristics of wild primate foods: do the diets of our closest living relatives have lessons for us? Nutrition. 1999;15(6):488–98. https://pubmed.ncbi.nlm.nih.gov/10378206/

1543

Milton K. Micronutrient intakes of wild primates: are humans different? Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):47–59. https://pubmed.ncbi.nlm.nih.gov/14527629/

1544

Benzie IFF. Evolution of dietary antioxidants. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):113–26. https://pubmed.ncbi.nlm.nih.gov/14527634/

1545

Schuch AP, Moreno NC, Schuch NJ, Menck CFM, Garcia CCM. Sunlight damage to cellular DNA: focus on oxidatively generated lesions. Free Radic Biol Med.

1 ... 287 288 289 290 291 292 293 294 295 ... 510
Перейти на страницу: