Шрифт:
Закладка:
1343
Blacklock CJ, Lawrence JR, Wiles D, et al. Salicylic acid in the serum of subjects not taking aspirin. Comparison of salicylic acid concentrations in the serum of vegetarians, non-vegetarians, and patients taking low dose aspirin. J Clin Pathol. 2001;54(7):553–5. https://pubmed.ncbi.nlm.nih.gov/11429429/
1344
Популярное индийское блюдо, завезенное в Гоа португальскими моряками. – Примеч. ред.
1345
Традиционные индийские блюда, приправленные куркумой, перцем чили, чесноком, кумином, кориандром, имбирем, тамариндом, лимонной кислотой, растительным маслом, уксусом и солью. – Примеч. ред.
1346
Paterson JR, Srivastava R, Baxter GJ, Graham AB, Lawrence JR. Salicylic acid content of spices and its implications. J Agric Food Chem. 2006;54(8):2891–6. https://pubmed.ncbi.nlm.nih.gov/16608205/
1347
Paterson JR, Srivastava R, Baxter GJ, Graham AB, Lawrence JR. Salicylic acid content of spices and its implications. J Agric Food Chem. 2006;54(8):2891–6. https://pubmed.ncbi.nlm.nih.gov/16608205/
1348
Pasche B, Wang M, Pennison M, Jimenez H. Prevention and treatment of cancer with aspirin: where do we stand? Semin Oncol. 2014;41(3):397–401. https://pubmed.ncbi.nlm.nih.gov/25023355/
1349
Baxter GJ, Graham AB, Lawrence JR, Wiles D, Paterson JR. Salicylic acid in soups prepared from organically and non-organically grown vegetables. Eur J Nutr. 2001;40(6):289–92. https://pubmed.ncbi.nlm.nih.gov/11876493/
1350
Duthie GG, Wood AD. Natural salicylates: foods, functions and disease prevention. Food Funct. 2011;2(9):515–20. https://pubmed.ncbi.nlm.nih.gov/21879102/
1351
Pawelec G. Aging as an inflammatory disease and possible reversal strategies. J Allergy Clin Immunol. 2020;145(5):1355–6. https://pubmed.ncbi.nlm.nih.gov/32142747/
1352
Puzianowska-Kuznicka M, Owczarz M, Wieczorowska-Tobis K, et al. Interleukin-6 and C-reactive protein, successful aging, and mortality: the PolSenior study. Immun Ageing. 2016;13:21. https://pubmed.ncbi.nlm.nih.gov/27274758/
1353
Assmann KE, Adjibade M, Shivappa N, et al. The inflammatory potential of the diet at midlife is associated with later healthy aging in French adults. J Nutr. 2018;148(3):437–44. https://pubmed.ncbi.nlm.nih.gov/29546305/
1354
Pedersen BK. Anti-inflammation – just another word for anti-ageing? J Physiol. 2009;587(23):5515. https://pubmed.ncbi.nlm.nih.gov/19959548/
1355
O’Keefe JH, Bell DSH. Postprandial hyperglycemia/hyperlipidemia (postprandial dysmetabolism) is a cardiovascular risk factor. Am J Cardiol. 2007;100(5):899–904. https://pubmed.ncbi.nlm.nih.gov/17719342/
1356
Vézina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo). 1975;28(10):721–6. https://pubmed.ncbi.nlm.nih.gov/1102508/
1357
Garza-Lombó C, Gonsebatt ME. Mammalian target of rapamycin: its role in early neural development and in adult and aged brain function. Front Cell Neurosci. 2016;10:157. https://pubmed.ncbi.nlm.nih.gov/27378854/
1358
Sabatini DM. Twenty-five years of mTOR: uncovering the link from nutrients to growth. PNAS. 2017;114(45):11818–25. https://pubmed.ncbi.nlm.nih.gov/29078414/
1359
Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203. https://pubmed.ncbi.nlm.nih.gov/31937935/
1360
Blagosklonny MV. TOR-driven aging: speeding car without brakes. Cell Cycle. 2009;8(24):4055–9. https://pubmed.ncbi.nlm.nih.gov/19923900/
1361
Schmeisser K, Parker JA. Pleiotropic effects of mTOR and autophagy during development and aging. Front Cell Dev Biol. 2019;7. https://pubmed.ncbi.nlm.nih.gov/31572724/
1362
Vasunilashorn S, Finch CE, Crimmins EM, et al. Inflammatory gene variants in the Tsimane, an indigenous Bolivian population with a high infectious load. Biodemography Soc Biol. 2011;57(1):33–52. https://pubmed.ncbi.nlm.nih.gov/21845926/
1363
Huebbe P, Schloesser A, Rimbach G. A nutritional perspective on cellular rejuvenation. Oncotarget. 2015;6(16):13846–7. https://pubmed.ncbi.nlm.nih.gov/26116836/
1364
Sabatini DM. Twenty-five years of mTOR: uncovering the link from nutrients to growth. PNAS. 2017;114(45):11818–25. https://pubmed.ncbi.nlm.nih.gov/29078414/
1365
Blagosklonny MV. Does rapamycin slow down time? Oncotarget. 2018;9(54):30210–2. https://pubmed.ncbi.nlm.nih.gov/30100983/
1366
Wei Y, Zhang YJ, Cai Y. Growth or longevity: the TOR’s decision on lifespan regulation. Biogerontology. 2013;14(4):353–63. https://pubmed.ncbi.nlm.nih.gov/23740528/
1367
Swindell WR. Meta-analysis of 29 experiments evaluating the effects of rapamycin on life span in the laboratory mouse. J Gerontol A Biol Sci Med Sci. 2017;72(8):1024–32. https://pubmed.ncbi.nlm.nih.gov/27519886/
1368
Blagosklonny MV. Rapamycin for longevity: opinion article. Aging (Albany NY). 2019;11(19):8048–67. https://pubmed.ncbi.nlm.nih.gov/31586989/
1369
Weichhart T. mTOR as regulator of lifespan, aging, and cellular senescence: a mini-review. Gerontology. 2018;64(2):127–34. https://pubmed.ncbi.nlm.nih.gov/29190625/
1370
Sharp ZD, Strong R. The role of mTOR signaling in controlling mammalian life span: what a fungicide teaches us about longevity. J Gerontol A Biol Sci Med Sci. 2010;65A(6):580–9. https://pubmed.ncbi.nlm.nih.gov/20083554/
1371
Kaeberlein M, Kennedy BK. A midlife longevity drug? Nature. 2009;460(7253):331–2. https://pubmed.ncbi.nlm.nih.gov/19606132/
1372
Blagosklonny MV. Rapamycin for longevity: opinion article. Aging (Albany NY). 2019;11(19):8048–67. https://pubmed.ncbi.nlm.nih.gov/31586989/
1373
Arriola Apelo SI, Lamming DW. Rapamycin: an inhibiTOR of aging emerges from the soil of Easter Island. J Gerontol A Biol Sci Med Sci. 2016;71(7):841–9. https://pubmed.ncbi.nlm.nih.gov/27208895/
1374
Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203. https://pubmed.ncbi.nlm.nih.gov/31937935/
1375
Weichhart T. mTOR as regulator of lifespan, aging, and cellular senescence: a mini-review. Gerontology. 2018;64(2):127–34. https://pubmed.ncbi.nlm.nih.gov/29190625/
1376
Stallone G, Schena A, Infante B, et al. Sirolimus for Kaposi’s sarcoma in renal-transplant recipients. N Engl J Med. 2005;352(13):1317–23. https://pubmed.ncbi.nlm.nih.gov/15800227/
1377
Majumder S, Caccamo A, Medina DX, et al. Lifelong rapamycin administration ameliorates age-dependent cognitive deficits by reducing IL-1ß and enhancing NMDA signaling. Aging Cell. 2012;11(2):326–35. https://pubmed.ncbi.nlm.nih.gov/22212527/
1378
Wilkinson JE, Burmeister L, Brooks SV, et al. Rapamycin slows aging in mice. Aging Cell. 2012;11(4):675–82. https://pubmed.ncbi.nlm.nih.gov/22587563/
1379
An JY, Kerns KA, Ouellette A,