Шрифт:
Закладка:
7836
Cuevas-Ramos D, Almeda-Valdés P, Meza-Arana CE, et al. Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLoS One. 2012;7(5):e38022. https://pubmed.ncbi.nlm.nih.gov/22701542/
7837
Cuevas-Ramos D, Almeda-Valdés P, Meza-Arana CE, et al. Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLoS One. 2012;7(5):e38022. https://pubmed.ncbi.nlm.nih.gov/22701542/
7838
Khalafi M, Alamdari KA, Symonds ME, Nobari H, Carlos-Vivas J. Impact of acute exercise on immediate and following early post-exercise FGF-21 concentration in adults: systematic review and meta-analysis. Hormones (Athens). 2021;20(1):23–33. https://pubmed.ncbi.nlm.nih.gov/33151509/
7839
Keihanian A, Arazi H, Kargarfard M. Effects of aerobic versus resistance training on serum fetuin-A, fetuin-B, and fibroblast growth factor-21 levels in male diabetic patients. Physiol Int. 2019;106(1):70–80. https://pubmed.ncbi.nlm.nih.gov/30888221/
7840
Erickson A, Moreau R. The regulation of FGF21 gene expression by metabolic factors and nutrients. Horm Mol Biol Clin Investig. 2016;30(1). https://pubmed.ncbi.nlm.nih.gov/27285327/
7841
Zhang Y, Xie Y, Berglund ED, et al. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. eLife. 2012;1:e00065. https://pubmed.ncbi.nlm.nih.gov/23066506/
7842
Salminen A, Kauppinen A, Kaarniranta K. FGF21 activates AMPK signaling: impact on metabolic regulation and the aging process. J Mol Med (Berl). 2017;95(2):123–31. https://pubmed.ncbi.nlm.nih.gov/27678528/
7843
Holmes D. Fasting induces FGF21 in humans. Nat Rev Endocrinol. 2016;12(1):3. https://pubmed.ncbi.nlm.nih.gov/26585659/
7844
Fazeli PK, Lun M, Kim SM, et al. FGF21 and the late adaptive response to starvation in humans. J Clin Invest. 2015;125(12):4601–11. https://pubmed.ncbi.nlm.nih.gov/26529252/
7845
Gälman C, Lundåsen T, Kharitonenkov A, et al. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARa activation in man. Cell Metab. 2008;8(2):169–74. https://pubmed.ncbi.nlm.nih.gov/18680716/
7846
Murata Y, Nishio K, Mochiyama T, et al. Fgf21 impairs adipocyte insulin sensitivity in mice fed a low-carbohydrate, high-fat ketogenic diet. PLoS One. 2013;8(7):e69330. https://pubmed.ncbi.nlm.nih.gov/23874946/
7847
Gälman C, Lundåsen T, Kharitonenkov A, et al. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARa activation in man. Cell Metab. 2008;8(2):169–74. https://pubmed.ncbi.nlm.nih.gov/18680716/
7848
Crujeiras AB, Gomez-Arbelaez D, Zulet MA, et al. Plasma FGF21 levels in obese patients undergoing energy-restricted diets or bariatric surgery: a marker of metabolic stress? Int J Obes. 2017;41(10):1570–8. https://pubmed.ncbi.nlm.nih.gov/28588304/
7849
Christodoulides C, Dyson P, Sprecher D, Tsintzas K, Karpe F. Circulating fibroblast growth factor 21 is induced by peroxisome proliferator-activated receptor agonists but not ketosis in man. J Clin Endocrinol Metab. 2009;94(9):3594–601. https://pubmed.ncbi.nlm.nih.gov/19531592/
7850
Asle Mohammadi Zadeh M, Kargarfard M, Marandi SM, Habibi A. Diets along with interval training regimes improves inflammatory & anti-inflammatory condition in obesity with type 2 diabetes subjects. J Diabetes Metab Disord. 2018;17(2):253–67. https://pubmed.ncbi.nlm.nih.gov/30918861/
7851
Salminen A, Kaarniranta K, Kauppinen A. Integrated stress response stimulates FGF21 expression: systemic enhancer of longevity. Cell Signal. 2017;40:10–21. https://pubmed.ncbi.nlm.nih.gov/28844867/
7852
Fazeli PK, Lun M, Kim SM, et al. FGF21 and the late adaptive response to starvation in humans. J Clin Invest. 2015;125(12):4601–11. https://pubmed.ncbi.nlm.nih.gov/26529252/
7853
Lundsgaard AM, Fritzen AM, Sjøberg KA, et al. Circulating FGF21 in humans is potently induced by short term overfeeding of carbohydrates. Mol Metab. 2017;6(1):22–9. https://pubmed.ncbi.nlm.nih.gov/28123934/
7854
Li H, Gao Z, Zhang J, et al. Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3. Diabetes. 2012;61(4):797–806. https://pubmed.ncbi.nlm.nih.gov/22338096/
7855
Erickson A, Moreau R. The regulation of FGF21 gene expression by metabolic factors and nutrients. Horm Mol Biol Clin Investig. 2016;30(1). https://pubmed.ncbi.nlm.nih.gov/27285327/
7856
Harrison DE, Strong R, Allison DB, et al. Acarbose, 17-a-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell. 2014;13(2):273–82. https://pubmed.ncbi.nlm.nih.gov/24245565/
7857
McCarty MF. Practical prospects for boosting hepatic production of the “pro-longevity” hormone FGF21. Horm Mol Biol Clin Invest. 2015;30(2). https://pubmed.ncbi.nlm.nih.gov/26741352/
7858
Laeger T, Henagan TM, Albarado DC, et al. FGF21 is an endocrine signal of protein restriction. J Clin Invest. 2014;124(9):3913–22. https://pubmed.ncbi.nlm.nih.gov/25133427/
7859
Trumbo P, Schlicker S, Yates AA, Poos M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc. 2002;102(11):1621–30. https://pubmed.ncbi.nlm.nih.gov/12449285/
7860
Nutrient intakes from food: mean amounts and percentages of calories from protein, carbohydrate, fat, and alcohol, one day, 2005–2006. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/0506/table_2_nif_05.pdf. Published 2008. Accessed January 19, 2023.; https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/0506/table_2_nif_05.pdf
7861
Fontana L, Cummings NE, Arriola Apelo SI, et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 2016;16(2):520–30. https://pubmed.ncbi.nlm.nih.gov/27346343/
7862
Fontana L, Cummings NE, Arriola SI, et al. Supplemental information: decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. https://www.cell.com/cms/10.1016/j.celrep.2016.05.092/attachment/1cc73bb8-d48a-497a-8cb6–16828f45777b/mmc1.pdf. Published July 12, 2016. Accessed January 1, 2023.; https://www.cell.com/cms/10.1016/j.celrep.2016.05.092/attachment/1cc73bb8-d48a-497a-8cb6-16828f45777b/mmc1.pdf
7863
Fontana L, Cummings NE, Arriola Apelo SI, et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 2016;16(2):520–30. https://pubmed.ncbi.nlm.nih.gov/27346343/
7864
Müller TD, Tschöp MH. Play down protein to play up metabolism? J Clin Invest. 2014;124(9):3691–3. https://pubmed.ncbi.nlm.nih.gov/25133420/
7865
Fontana L, Cummings NE, Arriola Apelo SI, et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 2016;16(2):520–30. https://pubmed.ncbi.nlm.nih.gov/27346343/
7866
Maida A, Zota A, Sjøberg KA, et al. A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution. J Clin Invest. 2016;126(9):3263–78. https://pubmed.ncbi.nlm.nih.gov/27548521/
7867
Gosby AK, Conigrave AD, Lau NS, et al.