Шрифт:
Закладка:
Фило неуверенно кивнул.
— Теперь возьмем плоскость, — не унимался Мате.
— Где возьмем?
— О господи! В воображении, конечно. Итак, возьмем воображаемую плоскость и рассечем ею конус, ну хотя бы параллельно оси. В этом случае на поверхности конуса появится линия, которая называется гипе́рболой. Видите?
Фило ничего не видел.
— Полное отсутствие математического воображения, — констатировал Мате и карандашом нарисовал на поверхности фунтика кривую от воображаемого сечения. — Вот вам гипербола. А теперь рассечем конус параллельно образующей. При этом на поверхности его получится линия, которая называется параболой. Вот она.
Фило язвительно хихикнул.
— Интересно, как вы отличаете гиперболу от параболы? На мой взгляд, они совершенно одинаковы.
Мате снова достал блокнот и начертил две кривые.
— Неужели и теперь не замечаете разницы?
— Теперь замечаю, — снизошел Фило. — У гиперболы концы расходятся, как у рогатки, а у параболы вроде бы держатся поближе, словно что-то их друг к другу притягивает… Но при чем тут все-таки лепешки?
— Не беспокойтесь, дойдем и до лепешек, — заверил Мате. — На сей раз проведем такое сечение, которое не будет ни параллельным образующей, ни параллельным оси. В общем, нечто промежуточное между ними. И как вы думаете, что у нас при этом получится? У нас получится замкнутая кривая, именуемая эллипсом.
— Лепешка! — сейчас же установил Фило, взглянув на контур, нарисованный на фунтике. — Как говорится в «Евгении Онегине», увы, сомнений нет, я съел эллипс.
— Да, теперь уже не скажешь, что вы не пробовали геометрии. Теперь вы знаете, что все на свете может быть выражено языком математики.
— Даже этот четвероногий корабль пустыни? — Фило указал на высокомерно жующего верблюда.
— Отчего бы и нет? Взгляните на поверхность, образованную его горбами. Великолепный образчик гиперболи́ческого параболо́ида.
Мате провел ладонью по мохнатой седлообразной спине. Но верблюд был противником фамильярности: он отвернулся и сплюнул, да так выразительно, что друзья расхохотались.
— Видите, — торжествовал Фило, — плевал он на ваш параболический гиперболоид или как его там…
Послышались певучие выкрики: «Дыни, дыни! Спелые дыни! Положи кусочек в рот — половина сахар, половина мед!»
— Не хотите ли отведать ломтик этого восхитительного эллипса, Мате? — предложил Фило, желая щегольнуть новыми познаниями.
Но увы! Мате сказал, что дыня не эллипс, а эллипсоид вращения.
— Это что еще за фрукт?
— Скорее продукт. Продукт вращения эллипса вокруг своей оси.
— С вами не соскучишься. Не объясните ли заодно, что такое арбуз?
Фило надеялся, что Мате нипочем не ответит. Но тот объявил, что арбуз — шар, иначе говоря, продукт вращения круга вокруг своего диаметра. А так как круг можно рассматривать как эллипс, у которого все оси одинаковы, стало быть, шар есть частный случай эллипсоида.
Фило опешил. Выходит, арбуз — частный случай дыни? Но Мате не нашел в таком выводе ничего нелепого. По его мнению, Фило начинает рассуждать как настоящий математик. Тот хмуро поклонился.
— Приятно слышать. Но, откровенно говоря, до сих пор я себе нравился больше. Как сказано в «Евгении Онегине», «куда, куда вы удалились, весны моей златые дни?». Где то прекрасное время, когда я ел арбуз, не подозревая, что он — частный случай дыни? Где, скажите мне, та счастливая пора, когда я воспринимал мир непосредственно, не размышляя, не думая, что он такое с точки зрения математики?
— Вас послушать — размышление свойственно только науке, — колко возразил Мате. — А разве ваше дражайшее искусство не рассуждает, не анализирует, не пытается осмыслить действительность?
— Да, пытается. И осмысливает. Но своими средствами. Без помощи гиперболического параболоида. — Фило постучал пальцем по груди. — С помощью сердца. А сердце, милостивый государь, математике не подвластно. Сердца математикой не проанализируешь.
— Ошибаетесь, — холодно сказал Мате. — Сердце — это не что иное, как «эр», равное двум «а», умноженным на единицу плюс косинус «тэта».
— Мате, голубчик, что вы такое говорите! Вы не заболели?
Но Мате не заболел. Просто, сказал он, есть в математике такая кривая, очень похожая на сердце, каким его обычно рисуют влюбленные, только без стрелы. Называется она кардио́идой. От греческого «ка́рдиа» — «сердце». Ее-то уравнение он и привел.
Мате снова вытащил блокнот и нарисовал кардиоиду.
— В самом деле похоже, — кисло усмехнулся Фило. — И кто ее только выдумал?
— Один ученый, о котором вы, конечно, не знаете. Паскаль.
— Можно ли не знать о человеке, из-за которого в детстве получал двойки? У него еще есть закон о давлении чего-то там на что-то…
— Во-первых, не чего-то на что-то, а жидкости и газа на стенки сосуда. А во-вторых, мы с вами говорим о разных Паскалях. Вы имеете в виду великого французского ученого семнадцатого века Блеза Паскаля, а я — его отца, Этьена Паскаля, тоже незаурядного математика. Именно он изучал кривую, названную улиткой Паскаля. — Мате нарисовал замкнутую самопересекающуюся кривую с петелькой внутри. — Видите, эта петелька может увеличиваться и уменьшаться. Когда она исчезает совсем, улитка Паскаля превращается в кардиоиду.
Фило озабоченно ощупал себя слева. Неужели с точки зрения математики сердце — частный случай улитки?!
Острые глазки Мате засветились добродушной хитрецой. Мог ли он предполагать, что Фило не понимает научного юмора? Ведь кардиоида — не сердце, а всего лишь сходная с ним кривая. А говоря о кривых, не стоит быть слишком прямолинейным.
— Ага! — закричал Фило. — Значит, вы признаёте, что человеческое сердце и математический расчет — вещи несовместные?
— Ну, это еще неизвестно. Строение живых организмов — предмет пристального внимания инженеров, которые ищут в природе прообразы своих будущих сооружений. Природа, знаете ли, на редкость изобретательный конструктор. У нее есть чему поучиться. Возьмите, к примеру, летучую мышь…
— Вот еще! — Фило поморщился. — Я их терпеть не могу.
Мате пожал плечами:
— За что такая немилость? Летучие мыши не только безобидны, но даже полезны. Они уничтожают вредных насекомых, да еще ночью.
— Вслепую?!
— В том-то и дело!
И Мате стал рассказывать.
Оказывается, зрение у летучей мыши очень слабое. Но природа снабдила ее замечательным свойством.