Шрифт:
Закладка:
2074
Fretts AM, Howard BV, Siscovick DS, et al. Processed meat, but not unprocessed red meat, is inversely associated with leukocyte telomere length in the Strong Heart Family Study. J Nutr. 2016;146(10):2013–8. https://pubmed.ncbi.nlm.nih.gov/22277554/
2075
Leung CW, Laraia BA, Needham BL, et al. Soda and cell aging: associations between sugar-sweetened beverage consumption and leukocyte telomere length in healthy adults from the National Health and Nutrition Examination Surveys. Am J Public Health. 2014;104(12):2425–31. https://pubmed.ncbi.nlm.nih.gov/25322305/
2076
Valdes AM, Andrew T, Gardner JP, et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366(9486):662–4. https://pubmed.ncbi.nlm.nih.gov/16112303/
2077
Institute of Medicine. Dietary Reference Intakes: Proposed Definition of Dietary Fiber. National Academies Press; 2001. https://pubmed.ncbi.nlm.nih.gov/25057569/
2078
Xu Q, Parks CG, DeRoo LA, Cawthon RM, Sandler DP, Chen H. Multivitamin use and telomere length in women. Am J Clin Nutr. 2009;89(6):1857–63. https://pubmed.ncbi.nlm.nih.gov/19279081/
2079
Min KB, Min JY. Association between leukocyte telomere length and serum carotenoid in US adults. Eur J Nutr. 2017;56(3):1045–52. https://pubmed.ncbi.nlm.nih.gov/26818530/
2080
Liu JJ, Crous-Bou M, Giovannucci E, De Vivo I. Coffee consumption is positively associated with longer leukocyte telomere length in the Nurses’ Health Study. J Nutr. 2016;146(7):1373–8. https://pubmed.ncbi.nlm.nih.gov/27281805/
2081
Tucker LA. Caffeine consumption and telomere length in men and women of the National Health and Nutrition Examination Survey (NHANES). Nutr Metab (Lond). 2017;14(1):10. https://pubmed.ncbi.nlm.nih.gov/28603543/
2082
Freitas-Simoes TM, Ros E, Sala-Vila A. Telomere length as a biomarker of accelerated aging: is it influenced by dietary intake? Curr Opin Clin Nutr Metab Care. 2018;21(6):430–6. https://pubmed.ncbi.nlm.nih.gov/30148739/
2083
Chan R, Woo J, Suen E, Leung J, Tang N. Chinese tea consumption is associated with longer telomere length in elderly Chinese men. Br J Nutr. 2010;103(1):107–13. https://pubmed.ncbi.nlm.nih.gov/19671205/
2084
Sheng R, Gu ZL, Xie ML. Epigallocatechin gallate, the major component of polyphenols in green tea, inhibits telomere attrition mediated cardiomyocyte apoptosis in cardiac hypertrophy. Int J Cardiol. 2013;162(3):199–209. https://pubmed.ncbi.nlm.nih.gov/22000973/
2085
Rusak G, Komes D, Likic S, Horžic D, Kovac M. Phenolic content and antioxidative capacity of green and white tea extracts depending on extraction conditions and the solvent used. Food Chem. 2008;110(4):852–8. https://pubmed.ncbi.nlm.nih.gov/26047270/
2086
Hovanloo F, Fallah Huseini H, Hedayati M, Teimourian M. Effects of aerobic training combined with green tea extract on leukocyte telomere length, quality of life and body composition in elderly women. J Med Plants. 2016;15(59):47–57. https://www.researchgate.net/publication/309402738_Effects_of_Aerobic_Training_Combined_with_Green_Tea_Extract_on_Leukocyte_Telomere_Length_Quality_of_Life_and_Body_Composition_in_Elderly_Women
2087
Tran HTT, Schreiner M, Schlotz N, Lamy E. Short-term dietary intervention with cooked but not raw Brassica leafy vegetables increases telomerase activity in CD8+ lymphocytes in a randomized human trial. Nutrients. 2019;11(4):786. https://pubmed.ncbi.nlm.nih.gov/30959753/
2088
Sarma DN, Barrett ML, Chavez ML, et al. Safety of green tea extracts: a systematic review by the US Pharmacopeia. Drug Saf. 2008;31(6):469–84. https://pubmed.ncbi.nlm.nih.gov/18484782/
2089
Yu Z, Samavat H, Dostal AM, et al. Effect of green tea supplements on liver enzyme elevation: results from a randomized intervention study in the United States. Cancer Prev Res (Phila). 2017;10(10):571–9. https://pubmed.ncbi.nlm.nih.gov/28765194/
2090
Hu J, Webster D, Cao J, Shao A. The safety of green tea and green tea extract consumption in adults – results of a systematic review. Regul Toxicol Pharmacol. 2018;95:412–33. https://pubmed.ncbi.nlm.nih.gov/29580974/
2091
O’Callaghan N, Parletta N, Milte CM, Benassi-Evans B, Fenech M, Howe PRC. Telomere shortening in elderly individuals with mild cognitive impairment may be attenuated with ¿-3 fatty acid supplementation: a randomized controlled pilot study. Nutrition. 2014;30(4):489–91. https://pubmed.ncbi.nlm.nih.gov/24342530/
2092
Holub A, Mousa S, Abdolahi A, et al. The effects of aspirin and N-3 fatty acids on telomerase activity in adults with diabetes mellitus. Nutr Metab Cardiovasc Dis. 2020;30(10):1795–9. https://pubmed.ncbi.nlm.nih.gov/32723580/
2093
Kiecolt-Glaser JK, Epel ES, Belury MA, et al. Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: a randomized controlled trial. Brain Behav Immun. 2013;28:16–24. https://pubmed.ncbi.nlm.nih.gov/23010452/
2094
Barden A, O’Callaghan N, Burke V, et al. n–3 fatty acid supplementation and leukocyte telomere length in patients with chronic kidney disease. Nutrients. 2016;8(3):175. https://pubmed.ncbi.nlm.nih.gov/27007392/
2095
García-Calzón S, Martínez-González MA, Razquin C, et al. Mediterranean diet and telomere length in high cardiovascular risk subjects from the PREDIMED-NAVARRA study. Clin Nutr. 2016;35(6):1399–405. https://pubmed.ncbi.nlm.nih.gov/27083496/
2096
Pusceddu I, Herrmann M, Kirsch SH, et al. Prospective study of telomere length and LINE-1 methylation in peripheral blood cells: the role of B vitamins supplementation. Eur J Nutr. 2016;55(5):1863–73. https://pubmed.ncbi.nlm.nih.gov/27083496/
2097
Sharif R, Thomas P, Zalewski P, Fenech M. Zinc supplementation influences genomic stability biomarkers, antioxidant activity, and zinc transporter genes in an elderly Australian population with low zinc status. Mol Nutr Food Res. 2015;59(6):1200–12. https://pubmed.ncbi.nlm.nih.gov/25755079/
2098
Zarei M, Zarezadeh M, Hamedi Kalajahi F, Javanbakht MH. The relationship between vitamin D and telomere/telomerase: a comprehensive review. J Frailty Aging. 2021;10(1):2–9. https://pubmed.ncbi.nlm.nih.gov/33331615/
2099
Zhu H, Guo D, Li K, et al. Increased telomerase activity and vitamin D supplementation in overweight African Americans. Int J Obes (Lond). 2012;36(6):805–9. https://pubmed.ncbi.nlm.nih.gov/21986705/
2100
Yang T, Wang H, Xiong Y, et al. Vitamin D supplementation improves cognitive function through reducing oxidative stress regulated by telomere length in older adults with mild cognitive impairment: a 12-month randomized controlled trial. J Alzheimers Dis. 2020;78(4):1509–18. https://pubmed.ncbi.nlm.nih.gov/33164936/
2101
Guo Z, Lou Y, Kong M, Luo Q, Liu Z, Wu J. A systematic review of phytochemistry, pharmacology and pharmacokinetics