Онлайн
библиотека книг
Книги онлайн » Разная литература » Теория относительности и сверхсветовая скорость (издание второе) - Владимир Иванович Моренко

Шрифт:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 18
Перейти на страницу:
чтобы расстояние между наблюдателем и объектом было неизменным. Но предположим, что нам каким-то образом удалось определить реальную скорость смещения центров двух инерциальных систем координат. При этом необходимо осознавать, что визуально определяемое межцентровое расстояние в любой момент времени отличается от реально существующего. С учетом данных обстоятельств можно приступить к решению задачи о сравнении разных инерциальных систем отсчета. Замерив угол между вектором скорости смещения движущегося наблюдателя и радиус-вектором между неподвижным наблюдателем и объектом, получаем стандартную геометрическую задачу о нахождении длины третьей стороны треугольника при известности двух сторон и угла между ними. При решении данной задачи необходимо иметь ввиду, что расстоянием между неподвижным объектом и движущимся наблюдателем считается расстояние между указанным объектом и местом, в котором должен находиться движущийся наблюдатель в момент прихода на объект импульса света, испущенного из точки расположения неподвижного наблюдателя. Данное замечание относится также и к расстоянию между неподвижным и движущимся наблюдателями. В силу обратимости движения расстояние между взаимно смещающимися объектом и наблюдателем не зависит от того, будет ли наблюдатель считать себя неподвижным или движущимся. Тогда найденное решение о расстоянии между движущимся наблюдателем и неподвижным объектом и является искомым решением, необходимым для сравнения различных систем координат. Это сравнение автоматически происходит при сопоставлении значений соответственных координат произвольно выбранной точки, и его можно свести к сравнению времен движения импульса света от неподвижного и движущегося наблюдателей к объекту. Есть только одна особенность, заключающаяся в том, что любой точке каждой из сравниваемых систем координат будет соответствовать один и только один момент времени. Следовательно, необходимо ясно осознавать, что такое сравнение будет иметь совсем уж специфический, если не сказать бесполезный, характер. Во-первых, результат сравнения по отношению к пространственному расположению наблюдаемого тела будет кардинально отличаться от визуальной картины. А, во-вторых, что наиболее важно, отсутствует какая-либо возможность сравнивать ход идентичных часов у разных наблюдателей, так как время как независимая переменная было сознательно исключено из рассмотрения, и каждый из наблюдателей снабжен не часами, а секундомером. Можно, конечно, если считать допустимым применение метода параллельного переноса, обойтись и секундомерами, используя их как часы для разных точек, однако мы получим только набор задач по определению третьей стороны треугольника при известности двух других сторон и угла между ними. А решение этих задач в общем случае, как хорошо известно, не совпадает с решением для прямоугольных треугольников. Кроме того, решение каждой из указанных задач будет справедливым только при условии независимости скорости света от скорости источника отраженного импульса света. Именно при таком условии возможно измерение относительной скорости движения разных инерциальных наблюдателей. Но и в этом случае невозможно сравнение результатов непосредственного наблюдения за окружающим миром неподвижным и движущимся наблюдателями с использованием предложенных Лоренцем теоретических обоснований по преобразованию координат. Более того, использование времени из выражения в качестве переменной величины позволяет определить проекции скорости света на координатные оси и , либо величину смещения центров сравниваемых систем координат, но в привязке к движению импульса света, и ничего иного.

Если же мы попытаемся придать выражениям производных соответствующих координат по времени из основного уравнения классических преобразований Лоренца иной смысл, а именно и , то нам придется отказаться от использования инвариантного выражения . А ведь именно на сочетании указанных взаимоисключающих условий делаются попытки построить релятивистскую динамику (кинематику).

Конечно, это вовсе не означает, что на базе различных независимых переменных невозможно строить некоторые специальные зависимости, целью которых является исключение одной или нескольких переменных. Но необходимо понимать, что с помощью исключенных переменных невозможно делать заключения и выводы, применимые только в случае независимости переменных.

Еще одним и чрезвычайно важным недостатком рассмотренного вывода классических трехмерных преобразований координат различных инерциальных систем является то, что при этом выводе была сознательно исключена возможность сравнения систем, движущихся со сверхсветовой скоростью относительно друг друга. Действительно, в движущейся системе координат произвольно выбранная точка должна принять испущенный из центра указанной системы импульс света. Но, поскольку она сама движется относительно упомянутого центра, этот импульс может достичь нее только, если он сможет ее догнать. А это в принципе невозможно, если скорость движения точки будет превышать скорость света. Следовательно, поставленная задача преобразования координат различных инерциальных систем трехмерного пространства не может считаться решенной.

Таким образом, как вывод, так и полученный на его основе результат, известный как лоренцевы преобразования координат, являются несостоятельными, поскольку, во-первых, использованная в них скорость взаимного смещения центров сравниваемых систем координат не является визуально наблюдаемой величиной, в то время как именно визуальная наблюдаемость считается неотъемлемым свойством классических преобразований Лоренца. Во-вторых, для указанных преобразований осознанно, или случайно принято условие, ограничивающее скорость смещения центров сравниваемых систем координат скоростью света, хотя никаких предварительных предпосылок для такого ограничения нет. Ну, и в-третьих, полученный результат по преобразованию времени не относится к собственно сравнению скорости хода пары идентичных часов в разных системах координат. В действительности, с помощью классических преобразований Лоренца можно получить некоторое бесполезное с практической точки зрения преобразование трехмерных систем координат, никак не затрагивающее вопрос сравнения скорости хода расположенных в этих системах идентичных часов. А эффект различия показаний на них при сравнении времени достижения испущенным из совмещенных центров указанных систем импульсом произвольно выбранной точки целиком и полностью определяется тем, что считая скорость света постоянной в обеих системах координат мы, тем не менее, завуалированно увеличиваем эту скорость за счет скорости сближения произвольно выбранной точки и импульса света, испущенного из центра движущейся системы координат.

Возможно с учетом этих обстоятельств, но прежде всего в связи с тем, что доказательство преобразований Лоренца для трехмерного пространства невозможно подтвердить экспериментальными данными, и побудило Альберта Эйнштейна взяться за создание специальной теории относительности.

Инвариантный интервал специальной теории относительности имеет внешнее сходство с основным уравнением, применяемым для вывода классических преобразований Лоренца. Но по своей сути, как с физической, так и математической точек зрения – это совершенно разные вещи.

Во-первых, в выражении для инвариантного интервала время, равно как и три пространственные координаты, является независимой переменной. А во-вторых, этот интервал является величиной измеримой, в то время как в классических преобразованиях Лоренца этот интервал, если бы он был введен, является тождественно равным нулю, и определяется он не через абсолютные значения времени и координат, а через их изменения.

Эйнштейн предложил способ учета конечности скорости света при описании движения в различных системах координат, ориентированный на классические преобразования Лоренца, с помощью инвариантного интервала, задаваемого выражением и являющегося определением длины отрезка по его проекциям в четырехмерной системе координат. Причем собственно пространство определено через особую

1 2 3 4 5 6 7 8 9 10 ... 18
Перейти на страницу: