Онлайн
библиотека книг
Книги онлайн » Разная литература » Теория относительности и сверхсветовая скорость (издание второе) - Владимир Иванович Моренко

Шрифт:

-
+

Закладка:

Сделать
1 ... 4 5 6 7 8 9 10 11 12 ... 18
Перейти на страницу:
изменения вида определения этой функции в разных системах координат. При этом необходимо подчеркнуть, что на скорость света изменение единиц измерения времени не влияет в соответствии со вторым постулатом специальной теории относительности. А величина относительной скорости является безразмерной, возникает только при определении функции Лагранжа в одной из систем координат (лабораторный наблюдатель и движущееся тело), и на нее не распространяется требование учета различия в единицах измерения времени при переходе от одной системы координат к другой.

И после всех уточнений выражение для механического импульса в трехмерном пространстве определяется следующим образом:

Следует отметить, что подобные выражения для импульса и времени собственного обсуждаются [2] при описании поведения гипотетических частиц – тахионов.

При малых значениях скорости тела (в трехмерном пространстве) кинетическая энергия, равно как и функция Лагранжа, будут выражены в привычной для классической механики форме без необходимости исключения каких-либо дополнительных величин:

при

При этом выполняется также известное из классической механики условие .

Данные обстоятельства объясняют правильность выбора единицы в качестве коэффициента при определении функции Лагранжа свободно движущегося только по временной координате в четырехмерном пространстве тела.

И поскольку для однородной и неоднородной функций Лагранжа определение силы через ускорение является одним и тем же, то:

Следовательно, выражение для силы совпадает с классическим выражением только при .

Отметим, что правила преобразования физических величин при переходе от четырехмерного пространства к трехмерному пространству не являются каким-то особым принципом (законом), который должен учитываться при построении физических теорий. В то же время, релятивистский принцип в форме лоренц-инвариантных преобразований импульса и энергии не дает возможности считать классическую механику частным случаем релятивистской механики и означает полный отказ от принципов классической механики, к тому же связанный с введением предельной скорости движения материальных объектов.

Но может быть релятивистский принцип лоренц-инвариантности справедлив в отношении электродинамики? Попробуем разобраться в этом вопросе.

Соответствие уравнений электродинамики принципу лоренц-инвариантности определяется выражением , для которого справедливы следующие зависимости:

Использование данных зависимостей при описании взаимодействия движущегося заряда и прямолинейного проводника с током приводит к тому, что сила Лоренца , действующая на данный заряд, в движущейся вместе с зарядом системе координат и та же самая сила, определяемая в лабораторной системе (проводник неподвижен), связаны соотношением (см., с.311 [6]).

При скоростях смещения центров инерциальных систем значительно меньших скорости света выражение для силы Лоренца, определенное в соответствии со специальной теорией относительности, должно совпадать с ее выражением в классической электродинамике. Однако этого не происходит, поскольку при таком условии релятивистское выражение для сил Лоренца стремится к виду:

И какой бы малой не была инерциальная скорость согласовать классическое равенство указанных сил и лоренц-инвариантное выражение силы Лоренца не удается. И причина такого противоречия заключается в том, что релятивистское выражение для силы Лоренца основано именно на лоренц-инвариантном определении электрической напряженности и магнитной индукции в соответствии с зависимостью .

В то же самое время, при решении данной задачи об определении силы Лоренца нет необходимости во введении двух инерциальных систем координат. Достаточно использовать одну и ту же систему, связанную с электрическим зарядом, в которой взаимодействие магнитного поля и электрического заряда рассматривается с точки зрения мнения наблюдателя о своем движении. В одном случае наблюдатель может считать себя и заряд неподвижными, а проводник движущимся, а в другом – движущимся вместе с зарядом, в то время как проводник с током, создающим магнитное поле, остается неподвижным. Обратим внимание, что в обоих случаях проводник с током создает магнитное поле, совершенно однозначно регистрируемое наблюдателем. А так как совершенно безразлично, что именно движется – магнитное поле вместе с проводником или заряд, то сила Лоренца, замеряемая наблюдателем, будет в обоих случаях той же самой и . В точности тот же самый результат будет получен и наблюдателем, связанным с проводником с током. И показания регистрирующего силу Лоренца прибора, находящегося в одной и той же точке пространства, должны удивительным образом меняться только по желанию наблюдателя признать себя неподвижным или движущимся.

И поскольку только лишь мнение наблюдателя не может быть причиной изменения реальной физической силы, а ранее отмеченное различие сил Лоренца в разных системах координат базируется на предположении о необходимости введения именно разных систем координат, то возникает неразрешимое противоречие в описании одного и того же процесса. Напомним, что введение понятия о разных инерциальных системах координат связано с необходимостью учета конечности скорости света при наблюдении за изменением положений в четырехмерном пространстве движущегося объекта. В данном случае такая задача не стоит, так как сила Лоренца рассматривается как величина постоянная, действующая на заряд в один единственный момент и в одной и той же точке трехмерного пространства. Это принципиальное несоответствие в результатах определения одной и той же силы вызвано тем, что использование лоренц-инвариантных соотношений для параметров электромагнитного поля основано на искусственном приеме введения необусловленных практической и теоретической необходимостью правил и является ошибочным.

Обратим особое внимание на то, что нами рассмотрено только электромагнитное взаимодействие электрического заряда с магнитным полем тока, то есть отдельный частный случай этого взаимодействия. Общий случай взаимодействия зарядов и создаваемых ими или внешних магнитных полей, также как и рассмотренный нами частный случай, характеризуется тем, что при его рассмотрении вообще не требуется определение траектории движения заряда при его наблюдении сторонним или связанным наблюдателем. А это значит, что нет никаких оснований для выражения электромагнитного взаимодействия на основании принципа Гамильтона и привлечения функции Лагранжа к определению сочетания электромагнитных вектор-потенциалов в разных точках. И уж тем более нет никакой необходимости в поиске некоего лоренц-инвариантного выражения для вектор-потенциалов в различных инерциальных системах координат. Для наблюдателя важно знать не скорости смещения заряда и магнитного пол относительно него, а скорость относительного движения между ними и только. Фактически в этом случае мы имеем дело с взаимодействием двух токов, в одном из которых выделяется только один заряд, изменение же законов взаимодействия токов на основе искусственно вводимого релятивистского принципа не вызвано ни экспериментальными данными, ни теоретическими предпосылками.

Что же касается света, как электромагнитной волны, имеющей электрические и магнитные свойства, но не имеющей электрического заряда, то и рассматривать ее надо как волновой процесс, а не как движение дискретных заряженных частиц. Однако волна не является безразмерным объектом, в то время как в рамках специальной теории относительности движение тела, имеющего конкретные размеры, заменяется движением его безразмерного центра масс. А поскольку для волны не существует такое понятие как центр масс, возникающее противоречие приходится нивелировать введением понятия о лишенном пространственных размеров импульса света. Данное понятие предполагает, что для соблюдения одномоментности

1 ... 4 5 6 7 8 9 10 11 12 ... 18
Перейти на страницу: