Шрифт:
Закладка:
Спорить, впрочем, никто и не собирался, что привело Нулика в отличное настроение. Заодно с хозяином возрадовался и Пончик. Хвост его так и сновал из стороны в сторону! Как метроном: тик-так, тик-так…
Снова объявили перерыв. Катер подходил к Крымскому мосту. Красивый мост! Самый красивый в Москве. Арки его поддерживаются вертикальными стальными струнами. И от этого он похож на арфу…
Полюбовались — и снова вернулись в Пифагорск, на Треугольную площадь…
Нулик никак не желал верить, что расстояние между большим пальцем и мизинцем Магистра двадцать пять сантиметров.
— У меня и десяти сантиметров не наберётся, — сказал он и растопырил свои розовые коротышки.
— Так то у тебя, а ты посмотри у Святослава Рихтера.
— Что ещё за Рихтер? — удивился Нулик.
— Знаменитый пианист, — пояснил Олег. — Он свободно берёт на рояле дециму — ноты от «до» до «ми» следующей октавы. А это побольше четверти метра!
— Сегодня же пойду и проверю, — сердито сказал президент.
Все так и покатились со смеху!
— Вернёмся, однако, к фонтану, — сказал Олег, когда мы успокоились.
— «Вот и фонтан, она сюда придёт!» — продекламировал Сева. (Он очень любит читать стихи. Особенно Пушкина.)
— Перестань, — остановила его Таня. — Если фонтан и площадь — подобные треугольники, как утверждает Магистр, то и соответственные углы у них должны быть одинаковы. А уж двух тупых углов у треугольника вообще быть не может.
— А ещё, — добавил Сева, — зря Магистр назвал фонтан пифагоровым треугольником. Во-первых, треугольник со сторонами 3, 4 и 8 метров уже не пифагоров, а во-вторых… во-вторых, такого треугольника вообще не существует!
Президент посмотрел на него подозрительно.
— Можно подумать, ты знаком со всеми треугольниками на свете!
— Зачем со всеми? Достаточно знать, что сумма двух любых сторон треугольника всегда больше третьей. А 3 + 4, как известно, равно семи. Так что третья сторона не может быть равна восьми. Понятно?
Но президент не унимался. Он хотел знать, что такое пифагоров треугольник и почему его называют ещё египетским.
— Почему, почему… — отмахнулся Сева. — Что я тебе — справочное бюро?
— Египетским треугольником называют треугольник со сторонами 3, 4 и 5, — пояснил Олег. — Это единственный прямоугольный треугольник, стороны которого равны трём последовательным целым числам. О нём знали ещё в Древнем Египте.
— Но при чём здесь Пифагор? — допытывался Нулик.
— А при том, что этот треугольник, как и все, впрочем, прямоугольные треугольники, подчиняется правилу Пифагора: сумма квадратов меньших сторон прямоугольного треугольника равна квадрату большей стороны.
— Проверим, — вздохнул Нулик. — Стороны пифагорова треугольника — 3, 4 и 5. Три в квадрате — девять, четыре в квадрате — шестнадцать, 9 + 16 = 25. А двадцать пять — это и есть пять в квадрате! Выходит, на Пифагора можно положиться.
— Конечно, — неожиданно вмешался я. — Но справедливости ради замечу, что это самое пифагорово правило — или, иначе, теорема — было известно задолго до Пифагора учёным Древнего Вавилона. А Пифагор много путешествовал и, между прочим, бывал и в Вавилоне… Но не будем умалять заслуг Пифагора. Тем более, что знаменит он не одной своей теоремой. Я мог бы многое рассказать о нём, но отложим до другого раза. А сейчас займёмся шуточной задачей, которую Единичка задала нашему Магистру.
— Умная всё-таки девочка! — сказала Таня.
— Вся в тебя, — съязвил Сева и втянул голову в плечи.
— А я что-то ничего не понял, — чистосердечно признался президент.
— Что ж тут непонятного? — возразил Сева. — Раз поезда встретились, значит, в момент встречи они находятся на одинаковом расстоянии от Москвы, как, впрочем, и от Пифагорска.
— Так вот в чём дело! — обрадовался Нулик. — А я-то думал, здесь надо что-то вычислять…
— Катер приближается к конечной остановке, — перебил его Олег, — а мы ещё не покончили со всеми ошибками. Правда, остаётся всего одна — та, которую совершил Магистр, выйдя на Прямоугольную площадь.
— Ах да! — вспомнила Таня. — Он сказал, что в прямоугольнике диагонали взаимно перпендикулярны.
— Слышал звон, да не знал, где он, — подхватил Сева. — Решил, что раз диагонали пересекаются под прямым углом в квадрате, значит, так же пересекаются они и в любом прямоугольнике… Конечно, всякий квадрат — прямоугольник, но не всякий прямоугольник — квадрат.
Громкий лай Пончика возвестил о том, что поездка окончена.
Бедный пёс устал от вынужденной неподвижности и бурно радовался возможности поразмяться. Не мешало поразмяться и нам. Мы покинули катер и отправились по домам пешком.
Диссертация рассеянного Магистра
В ПОГОНЕ ЗА МИНУСОМ
Когда мы примчались на вокзал, я ахнул, закрыл лицо руками и стал думать.
А думать было о чём! Ведь пока мы с Единичкой осматривали город Пифагорск, наш поезд ушёл!! А вместе с ним — все мои математические таблицы, инструменты и ещё… папа Минус.
Единичке было весело, а каково мне? Что я с ней стану делать? Вот я и задумался. И, представьте себе, придумал: надо догнать поезд!
Единичка ещё больше развеселилась: она очень любит приключенческие фильмы с погонями.
— Мы помчимся на ковбойских лошадях! — предложила она.
— Нет, мы полетим в самолёте, — ответил я, и мы тут же поспешили на аэродром.
Там уже стоял самолёт, готовый к отправке. Я попросил пилота чуть-чуть задержаться, а сам побежал в кассу. Но стюардесса остановила меня. Оказывается, на этот самолёт не нужно никаких билетов.
— Значит, мы можем лететь бесплатно? — спросил я.
— Не совсем, — замялась стюардесса и слегка поправила свою пилотку. — Для того чтобы лететь на нашем самолёте, нужно правильно решить задачу, которую вам предложат в пути.
— А если я сделаю ошибку? — спросила Единичка. — Тогда что?
— Всё зависит от того, что за ошибка, — ответила стюардесса. — Если случайная, вам её простят. А если грубая, ну тогда вам придётся остаться на второй…
— На второй год? — испугалась Единичка.
— Нет, на второй рейс, — пояснила стюардесса. — Вас этим же самолётом,