Шрифт:
Закладка:
— А дальше ты уже всё сделал прежде, — засмеялся Сева. — С точки зрения математики, задача уже решена…
— Так то с точки зрения математики, — нахохлился Нулик, — а я хочу видеть орешек…
На сей раз орешек попал по назначению, но и Пончик не остался в накладе: при разделе безореховых шариков он таки получил свою долю!
Покуда коричневые мячики один за другим исчезали, я рассказал собравшимся старую математическую шутку.
Однажды некоему математику предложили такую задачу: «Вам даётся пустой чайник и коробок спичек, а в кухне имеются водопроводный кран и газовая плита. Как вы вскипятите воду?» Математик, как и всякий разумный человек, наполнил чайник водой из крана, зажёг спичкой газ и поставил чайник на огонь.
«Правильно, — сказали ему. — Но вот вам вторая задача: чайник уже наполнен водой, газ зажжён. Как вы поступите теперь?»
Простой смертный взял бы да и поставил полный чайник на плиту — и дело с концом. Но не так поступил математик. Он вылил воду из чайника, погасил газ и сказал: «Вот и всё. Теперь у меня снова пустой чайник, коробка спичек, а в кухне — вода и газ. Дальнейшее сводится к решённой мною задаче».
— Значит, наш Сева — настоящий математик, — с гордостью сказал Нулик. — Ведь он поступил так же, когда мы решали задачу с двадцатью семью шариками.
Олег задумчиво потёр переносицу.
— По-моему, задачу о шариках можно обобщить для любого их числа. Если количество шариков три в любой степени, то для решения задачи достаточно число взвешиваний, равное показателю степени. Так, для того чтобы узнать, в каком из 729 шариков спрятан орешек, хватит шести взвешиваний. Потому что 729 — это три в шестой степени.
— А если шариков не три в какой-то степени, а, скажем, 726 или 741, тогда что? — спросил Сева.
— Ну, для 726 шариков потребуется столько же взвешиваний, сколько и для 729, то есть шесть. А вот если шариков 741, тут уже придётся взвешивать семь раз. Столько же раз нужно будет взвешивать во всех случаях, когда число шариков больше 729, но не больше 2187. После этого надо будет взвешивать уже не менее семи раз, потому что 2187 — это три в седьмой степени…
— По-моему, — сказал я, — надо от имени клуба выразить Олегу особую признательность за его выдающиеся заслуги перед наукой.
Благодарность была вынесена, и мы перешли к следующей ошибке Магистра.
— Магистр посоветовал мальчику зачеркнуть в дробях 16/64 и 26/65 все шестерки, — напомнила Таня. —Так, конечно, никто дробей не сокращает.
Нулик скорчил лукавую рожицу:
— Но ответ-то получился правильный!
— Ну и что ж? Просто забавное совпадение: ведь при сокращении на шестнадцать 16/64 как раз и превращаются в 1/4, а 26/65 при сокращении на 13 — в 2/5.
— А исключение, как известно, подтверждает правило, — закончил Сева. — В общем, говорить об этом больше не стоит. А вот на вымпелах для футболистов остановиться не мешает.
— Пустяковая задачка, — пренебрежительно отмахнулся президент. — Из трёх разноцветных полосок можно сделать шесть вымпелов, или, по-другому говоря, шесть перестановок. Как с номером автобуса. Помните?
— Так, да не так, — возразила Таня. — Во-первых, футболистов было не 6, а 15, и каждому нужен был свой особый вымпел. Во-вторых, ты не учёл, что вымпелы могли быть не только трёхцветные, но и одного или двух цветов. Одноцветных можно сделать только три, двухцветных — шесть. Прибавь сюда шесть вымпелов, которые получились из комбинации трёх цветов: 6 + 3 + 6 = 15. То, что нужно!
— И уйдёт на это 33 полосы, по одиннадцати каждого цвета, — подсчитал Сева.
Официантка стала убирать со стола, и мы поняли, что пора закругляться. К счастью, оставался всего один необсуждённый вопрос. Тот самый, который задала Магистру стюардесса.
— На этот раз Магистр был прав, — сказал Нулик. — Без таблицы квадратов этой задачи не решить.
Таня посмотрела на него искоса:
— Вот как? Ладно. Тогда скажи вот что: если ты возведёшь 5 в квадрат, во сколько раз увеличится пятёрка?
— В пять раз.
— Верно, — согласилась Таня. — А если некое число при возведении в квадрат увеличилось в 3,4 раза, что это было за число?
Президент развёл руками:
— Выходит, оно само и было. Три и четыре десятых.
— А ты говоришь — таблицы!
После этого президенту оставалось только закрыть заседание.
Диссертация рассеянного Магистра
ЮБИЛЕЙ В АЛЬФАБЕТАГАММЕ
Когда мы приземлились, выяснилось, что мы с Единичкой сели не в тот самолёт, и вместо того чтобы догнать папу Минуса, оказались в совершенно незнакомой местности. По-моему, где-то в тропиках, потому что солнце палило неимоверно. Пришлось нам немедленно надеть тёмные очки.
На аэродроме собралась огромная толпа местных жителей. Вероятно, решил я, это встречают ехавшую с нами футбольную команду — кто же, кроме футболистов, может удостоиться таких почестей? Но вот так история! Люди приветствовали вовсе не футболистов, а нас. Они размахивали флажками, кричали… Высоко над толпой плыли полотнища с надписями: «Привет знаменитому Магистру!», «Да здравствуют наши дорогие гости!»
Можете себе представить, как я смутился. Хотел даже нырнуть обратно в самолёт. Но в это время к трапу подошла делегация. Как выяснилось, это были члены юбилейного комитета. Председатель преподнёс Единичке огромный букет цветов, а ко мне обратился с речью:
— Препреуважаемый Магистр тр-тр-тр-тр наук! (Каких наук, я не расслышал и потому обозначил неразборчивое слово прилагательным «тр-тр-тр-тр».) Мы, жители города Альфабетагамма (точного названия я тоже не запомнил), — мы счастливы, что вы вместе с вашей прелестной спутницей решили отметить день своего рождения не где-нибудь, а именно у нас.
Так вот в чём дело! Хорошо, что мне напомнили, а то бы я позабыл, что сегодня день моего рождения. Да, но как об этом узнали здесь?!
— К сожалению, —