Онлайн
библиотека книг
Книги онлайн » Разная литература » Гайд по астрономии. Путешествие к границам безграничного космоса - Уильям Уоллер

Шрифт:

-
+

Закладка:

Сделать
1 ... 47 48 49 50 51 52 53 54 55 56
Перейти на страницу:
объяснить эффектами гравитационного линзирования фоновых галактик, осуществленного темной материей того скопления, которое находится на переднем плане. Анализ этих эффектов выявил присутствие гравитирующей темной материи как внутри отдельных галактик в тех или иных скоплениях, так и в пространстве, разделившем эти галактики. Астрономы пришли к выводу, что темная материя преобладает над всеми другими формами видимой материи в 8,5 раза. Это открытие не может не тревожить, поскольку сейчас доля темной материи, которую мы можем обнаружить в космической бездне, не превышает 15 %. Единственный выход — найти для этой материи, обладающей тяготением, но невидимой, приемлемых кандидатов.

Рис. 13.2. Кривые вращения ближайших спиральных галактик в разбивке по типам показывают, что орбитальные скорости остаются практически неизменными, несмотря на увеличение радиуса. Такое поведение противоречит ожиданиям, связанным с радиальным ослаблением звездного света в этих галактиках. Вместо этого ученые предполагают, что с увеличением радиуса суммарные массы этих галактик продолжают линейно расти. (По источнику: D. A. Popolo, со ссылкой на источник: A. Bosma, “Nonbaryonic Dark Matter in Cosmology”, Int. J. Mod. Phys. D23 [2014] 1430005 arXiv:1305.0456 [astro-ph. CO].)

Обычная темная материя

Объекты, состоящие из «обычных» протонов, нейтронов и электронов, при определенных обстоятельствах могут быть темными. Например, одинокая планета или спутник, удаленные от какой- либо звезды, не будут ни отражать звездный свет в сколь-либо великой мере, ни испускать заметное излучение. Отдельные черные дыры, холодные нейтронные звезды и белые карлики могут просто не попасть на наши детекторы. Несомненно, некоторые из этих межзвездных странников наполняют и наш Млечный Путь, и другие галактики. Ученые даже назвали такие объекты массивными астрофизическими компактными объектами гало (англ. massive astrophysical compact halo object, MACHO). Вопрос только в том, хватит ли их, чтобы объяснить долю в 85 %, которая приходится на невидимую, но гравитирующую материю. До сих пор астрономы, ведущие ее поиски, стремятся обнаружить объекты размером с планету или спутник, которые не принадлежат ни к протопланетным дискам, ни к зрелым солнечным системам, которых в нашей родной Галактике очень много. Даже если бы все звезды во всех галактиках содержали планетные системы и половина из этих систем скрылась во тьме, количество пропавшей материи составило бы лишь небольшой процент от необходимой величины. Такой же недостаток характерен и для предложенных оценок других MACHO.

Еще одно ограничение для обычной темной материи связано с процессом нуклеосинтеза, происходившим в течение первых нескольких минут после Большого взрыва. За это время нейтроны и протоны сливались в атомные ядра гелия-4, а также, в ультрамалых количествах, в атомные ядра дейтерия, гелия-3 и лития. Одиночные нейтроны распадаются обратно на протоны и электроны примерно за пять минут, и поэтому весь активный нуклеосинтез должен был произойти до достижения этого временного предела. Конечная продолжительность, в свою очередь, ограничивала количество ядерного вещества, которое можно было выделить из хаоса. Чтобы сопоставить относительные количества водорода, гелия-4 и других изотопов, наблюдающихся в современной Вселенной, астрофизики предполагают, что плотность всей этой обычной материи составляет всего 2–5 % от уровня, необходимого для того, чтобы ткань пространства-времени стала «плоской». Топологически плоский космос — это одно из главных открытий, сделанное в результате недавнего картирования космического микроволнового фона (см. гл. 9). И чтобы его объяснить, нам нужно гораздо больше темной материи и непомерная доля темной энергии (о ней чуть ниже).

Горячая темная материя

Необычная темная материя может быть трех видов: горячей, теплой и холодной. Как нам известно, субатомные частицы, называемые нейтрино, существуют в огромном множестве и представляют собой форму горячей темной материи из-за их крошечных масс и, соответственно, релятивистских скоростей. Такие экстремальные скорости позволяют им не поддаваться притяжению отдельных галактик и, возможно, даже галактических скоплений. На гораздо бо́льших масштабах нейтрино могли бы играть гравитирующую роль, но предполагаемой распространенности темной материи на галактические масштабы это не объясняет. Некоторые физики говорят о «стерильных нейтрино», которые взаимодействуют с обычной материей еще меньше, чем нейтрино, обнаруженные на сегодняшний день. Эти частицы могли бы иметь гораздо бо́льшую массу и, соответственно, меньшие скорости — достаточно низкие, чтобы подпасть под притяжение отдельных галактик. Сейчас их ищут многие, а наряду с этим ведутся поиски других слабо взаимодействующих массивных частиц — вимпов. Стратегия, получившая благосклонность и поддержку, заключается в том, чтобы разместить чувствительные детекторы частиц глубоко под землей и тем самым уменьшить назойливое фоновое влияние космических лучей. Но несмотря на десятилетия усилий, ни один эксперимент пока не привел к результату, который можно было бы повторить.

Холодная темная материя

Космологов манит идея о холодных и медленных вимпах, поскольку их наличие может объяснить очень многое: то, почему космический микроволновый фон устроен именно так, а не иначе; то, почему правы те, кто полагает, что в галактиках и галактических скоплениях присутствует темная материя; то, как именно устроены галактики в больших масштабах и то, как проходит процесс их формирования, при котором обычная материя непрерывно стремится вдоль нитей к ранее возникшим сгусткам темной материи (см. гл. 10). В число частиц холодной темной материи, существование которых пока лишь предполагается, входят более тяжелые аналоги «бродячего цирка» частиц, о котором нам уже известно. Наличие таких «теневых» частиц предсказано суперсимметричными теориями элементарной материи. Селектрино, нейтралино, фотино и гравитино — это лишь некоторые из предложенных суперсимметричных «тяжеловесов». Увы, нашим самым мощным ускорителям частиц и самым чувствительным детекторам еще предстоит совершить находки, способные подтвердить присутствие таких объектов в обозримом космосе.

Модифицированная ньютоновская динамика

Я проявил бы небрежность, если бы не упомянул в этой главе соперничающую гипотезу, способную полностью устранить необходимость в темной материи. Она получила название модифицированной ньютоновской динамики и утверждает, что сила тяжести массивного объекта уменьшается с расстоянием, которое немного отличается от знаменитого закона обратных квадратов Ньютона (о нем мы говорили в гл. 3). Есть и альтернативный взгляд: сила гравитационного притяжения могла бы оставаться ньютоновской, но реакция объекта на эту силу — его ускорение — отличалась бы от второго закона движения Ньютона, в котором a = F/m. Различия, как правило, становились бы существенными на очень больших расстояниях. Вот почему движения планет вокруг Солнца, по всей видимости, подчиняются ньютоновским ожиданиям, а движения звезд и газовых облаков во внешних частях галактик превосходят те прогнозы, которые мы делаем на основе материи, наблюдаемой в галактиках, и закона всемирного тяготения Ньютона. Кроме того, при помощи модифицированной ньютоновской динамики астрофизики пытаются объяснить некоторые подробности, связанные с кривыми вращения спиральных галактик,

1 ... 47 48 49 50 51 52 53 54 55 56
Перейти на страницу: