Шрифт:
Закладка:
Конечно, некоторые роботы и алгоритмы в своем развитии отступят от идеалов, запрограммированных их собственниками, в результате взаимодействия с другими людьми или машинами (представьте, к примеру, развитый беспилотный автомобиль, который будет развиваться в результате множества влияний, им испытываемых[23]). В подобных случаях может быть несколько сторон, ответственных за развитие данной машины и ее действия[24]. Независимо от того, что именно влияет на развитие подобных машин, исходный создатель обязан встроить в них определенные ограничения на развитие кода, чтобы можно было записывать факторы влияния и в то же время предотвращать возникновение негативных результатов. Когда же другой человек или организация взламывает либо отключает подобные ограничения, ответственным за проступки робота становится хакер.
В качестве примера применения этого принципа рассмотрим чат-бота, который постепенно обучается определенным паттернам диалога, используя для этого общение в сети Twitter. Если верить некоторым новостным аккаунтам, чат-бот компании Microsoft, Tay, оснащенный ИИ, быстро усвоил речевые паттерны отъявленных нацистов, проведя лишь несколько часов в Twitter[25]. Microsoft не программировала такой результат, но компания должна была знать, что опасно размещать бота на платформе, известной плохой модерацией преследований и ненавистнических высказываний. Кроме того, если бы чат-бот вел дневник дурных воздействий, он мог бы сообщить о них в сети Twitter, которая, если бы работала лучше, могла бы предпринять определенные действия, чтобы приостановить или замедлить поток оскорблений, исходящих от аккаунтов троллей, а может, и кого похуже.
Регулирующие ведомства должны будут требовать запроектированной ответственности (дополняющей обширные модели запроектированной безопасности и конфиденциальности). Для этого, возможно, придется запрограммировать на аппаратном уровне обязательные контрольные журналы или ввести практики лицензирования, в которых специально оговариваются проблемные исходы[26]. Подобные инициативы будут не просто регулировать робототехнику и ИИ post hoc, но и влиять на развитие систем, закрывая одни возможности 27 проектирования и поощряя другие[27].
* * *
Каждый из этих новых законов робототехники, требующих дополнительности, аутентичности, сотрудничества и атрибуции, основывается на теме, которая будет служить ориентиром для всего нашего исследования, а именно на ключевом различии между технологией, которая заменяет людей, и технологией, которая позволяет им лучше делать свою работу. Смысл новых законов в том, чтобы развивать программы, которые делают ставку на силы человека в таких областях, как здравоохранение и образование, и чтобы воспользоваться человеческими ограничениями для сужения масштаба и снижения интенсивности конфликта и зарегулированности в нашей социальной жизни.
Исследователи в области ИИ давно стремятся создать компьютеры, которые могли бы чувствовать, мыслить и действовать как люди. Еще в 1960-е гг. специалисты по робототехнике в MIT разрабатывали роботов-часовых, способных освободить солдат от утомительной и опасной обязанности стоять на посту в местах, которые могут подвергнуться атаке[28]. Однако есть и другое понимание робота-часового – его можно расценивать не в качестве ИИ, заменяющего воинский состав, а в качестве еще одного средства, повышающего эффективность солдат-охранников. Если внедрить такой ИИ, армии, возможно, не нужно будет призывать дополнительных солдат для контроля все новых и новых угроз. Можно разработать сенсоры и компьютеры, которые будут работать в качестве дополнительного набора ушей и глаз, быстро оценивая уровни угрозы и другие данные, чтобы помочь солдатам с выбором действий. Эта цель, которая определяется как «усиление интеллекта» (УИ), определила проекты многих первопроходцев интернета[29]. Также она является основой современного военного дела, то есть когда пилоты дронов работают с обширным комплексом данных, поступающих от сенсоров, и от их решений о воздушных бомбардировках зависят вопросы жизни и смерти.
Различие между ИИ и УИ, хотя порой оно и стирается, критически важно для определения направления инноваций. Большинство родителей не готовы отправить своих детей к учителям-роботам. Также детей не нужно учить тому, что их учителей со временем заменят машины, отлично подогнанные под их манеру обучения. В образовании есть много более гуманных концепций роботов. Например, школы уже успешно экспериментировали с «роботами-компаньонами», помогающими ученикам зубрить списки слов. Они способны задавать вопросы о том, что ученики только что выучили. Эти роботы, которые выглядят как животные или вымышленные создания, но не люди, не ставят под вопрос уникальность человека.
Исследователи постепенно приходят к выводу, что во многих контекстах УИ дает лучшие результаты и приносит больше пользы, чем искусственный или человеческий интеллект, когда они работают порознь. УИ и роботы, выполняющие функцию ассистентов, могут стать настоящим подарком для работников, высвобождая время для отдыха или досуга. Но в любой современной экономике действуют законы, которые заставляют выбирать ИИ, а не УИ.
Робот не просит отгулов, справедливой заработной платы, ему не нужна медицинская страховка. Когда труд рассматривается прежде всего в качестве издержек, справедливая оплата становится проблемой, которую как раз и должны решить роботы. Роботы привели к революции в промышленном производстве, заменив рабочих на конвейере. Сегодня многие бизнес-эксперты требуют похожего технологического развития, которое позволит роботам взять на себя более сложные задачи, начиная с медицины и заканчивая армией.
Слишком многие журналисты, увлеченные этим управленческим энтузиазмом, обсуждали «роботов-юристов» и «роботов-врачей» так, словно они уже существуют. В этой книге будет показано, что подобные описания нереалистичны. В той мере, в какой технология действительно меняет профессии, она обычно действует методами УИ, а не ИИ. За головокружительными заголовками о «программах, которые съедают мир», скрываются десятки менее громких случаев применения вычислений, помогающих адвокатам, врачам или учителям работать лучше и быстрее[30]. Вопрос программ инноваций теперь в том, как сохранить преобладание УИ и где развивать ИИ. Эту проблему мы проанализируем применительно к разным секторам, не пытаясь придумать одну на все случаи модель технологического развития.
В разговорах о роботах обычно два полюса – утопический («машины будут делать всю грязную, опасную или сложную работу») и дистонический («да и всю остальную, а потому создадут массовую безработицу»). Однако будущее автоматизации рабочих мест (и не только) будет определяться миллионами небольших решений о том, как развивать ИИ.
В какой мере можно довериться машинам и передать им задачи, которые раньше выполняли люди? Что приобретается и теряется, когда они берут их решение на себя? Каково оптимальное сочетание роботизированных и человеческих взаимодействий? И как различные правила – начиная с кодексов профессиональной этики и заканчивая страховыми программами и