Онлайн
библиотека книг
Книги онлайн » Разная литература » Интернет-журнал "Домашняя лаборатория", 2008 №5 - Журнал «Домашняя лаборатория»

Шрифт:

-
+

Закладка:

Сделать
1 ... 34 35 36 37 38 39 40 41 42 ... 137
Перейти на страницу:
процесс определения последовательности нуклеотидов. Этот термин также является калькой с английского названия).

Как это можно было сделать? Нужно было поставить какие-нибудь «буйки» в геноме человека, какой участок стоит за каким. Последовательность таких участков и составляет карту генома. Первой такой картой стала карта генетическая. Она показана на рисунке слева.

Рядом показана окрашенная хромосома, на которой видны поперечные полоски. Поперечная окрашенность индивидуальна для каждой хромосомы, каждая полоска имеет собственный номер, который представляет собой "адрес" данного участка на хромосоме. Ясно, что в каждом таком участке миллионы пар нуклеотидов, последовательность которых мы должны определить. Были получены полиморфные маркеры, то есть найдены такие участки хромосомы, которые у разных людей (или на разных хромосомах одного человека) содержат неидентичные последовательности нуклеотидов. В прошлой лекции упоминалось, что для генетической карты с интервалом в 10 % рекомбинации нужно 300 равноудаленных маркеров. Эти маркеры нужны для различения одной хромосомы от другой в данном локусе.

В основе детекции ДНК маркеров лежит метод амплификации (размножения) фрагментов ДНК in vitro с точностью до нуклеотида методом полимеразной цепной реакции (ПЦР). Методом ПЦР можно синтезировать фрагмент ДНК in vitro (в пробирке) и получить его как химически чистое вещество. Для синтеза используются короткие синтетические отрезки ДНК, называемые праймерами (затравка для синтеза). С 3'-конца праймера начинается синтез фрагмента ДНК по матричной нити, на которую он отжигается (прилипает при комплементарном взаимодействии между нуклеотидами праймера и матрицы). За один цикл достройки ДНК из двух нитей ДНК получили 4. В следующем цикле из 4 нитей получится уже 8 и т. д. Каждый цикл занимает несколько минут. За 30 циклов ПЦР целевой фрагмент размножится в 1 миллиард раз, что позволяет наблюдать фрагмент (после окраски). Время проведения каждого этапа ПЦР в будущем сократится на 2–3 порядка, таким образом, что каждый цикл будет проводиться за секунды.

Для различения папиной и маминой хромосом использовали так называемые STR-маркеры (Short Tandem Repeat), состоящие из одинаковых звеньев, чаще всего звено состояло из пары нуклеотидов ЦА. То есть нашли места в геноме, где повторялись эти вкрапленные звенья. Допустим в папиной хромосоме в фрагменте из 100 пар нуклеотидов была вставка из 20 звеньев, а в таком же месте маминой хромосомы было вставлено 22 звена. Этот фрагмент ДНК размножили in vitro, с точностью до нуклеотида методом полимеразной цепной реакции (ПЦР). Длина этих фрагментов будет у папы 100 + 20*2 = 140, а у мамы — 100 + 22*2 = 144. При фракционировании образованных фрагментов в геле под действием постоянного тока (электрофорез) мы можем провести разделение фрагментов по размеру. Чем тяжелее фрагмент, тем меньше его электрофоретическая подвижность и тем ближе к старту он будет находиться. Если у родителей ребенка длины фрагментов составляли (как указано в примере выше) 140 и 144 п.н., то и у ребенка будут эти полоски присутствовать.

Описанный подход применяется не только в фундаментальных исследованиях, но и в практике идентификации личности при судебно-медицинской экспертизе. Допустим данный локус в хромосоме может находиться в одном из 10 альтернативных состояний. (Эти состояния, аллели, различимы по их электрофоретической подвижности). Эти состояния различают 10 хромосом или людей с такими хромосомами. Если мы возьмем в анализ еще один локус (на другой хромосоме) с такими же характеристиками, то по этому локусу мы тоже различим 10 хромосом или людей. А по сочетанию состояний в этих двух локусах различимы 10 x 10 = 102 хромосом. Пять таких локусов позволят различить 105 хромосом. А поскольку хромосом у каждого из нас по паре, то сочетания аллелей этих пяти локусов дают 105 х 105 = 1010 вариантов. Это число вариантов больше, чем число людей на земле. На практике при идентификации используют набор аллелей из 13 локусов, хотя и пяти как мы видим, может быть волне достаточно.

Генетическая карта была первой картой генома человека, на основе которой строилась дальнейшая работа по картированию. Эту карту соотнесли с физической картой, показывающей порядок следования клонированных фрагментов ДНК вдоль генома (см. рисунок 1 справа).

Физические карты генома часто представлены наборами фрагментов ДНК, клонированные в векторных молекулах (рекомбинантных ДНК), упорядоченно расположенных относительно друг друга. Такой набор непрерывно перекрывающихся фрагментов ДНК называется контиг. Для того чтобы выявить перекрывание клонированных фрагментов ДНК и понадобилась ранее установленная карта генетических маркеров. Перекрывание устанавливалось между «большими» молекулами ДНК, содержащими примерно 106 пар нуклеотидов, которые были клонированы в искусственных хромосомах дрожжей (YAC-клоны, сокращение от Yeast Artificial Chromosome). Искусственные, потому что у них удалили основную часть собственно дрожжевой ДНК и вставили человеческие фрагменты ДНК. Такие конструкции способны реплицироваться в клетках дрожжей. Размер хромосом дрожжей как раз примерно 1–2 миллиона пар нуклеотидов.

Как устанавливали перекрывание клонированных фрагментов ДНК? У нас есть YAC-клон № 1 с протяженным фрагментом клонированной ДНК, а в нем, предположим, обнаружен и маркер А и маркер В, для которых из генетических данных известно, что они соседние на карте. В YAC-клоне № 2 уже нет маркера А, а есть маркеры В и С, причем также известно из генетической карты что В и С — соседи. В клоне № 3 есть маркеры С и D. Сопоставление данных по присутствию генетических маркеров А, В, С и D в YAC-клонах показывает что они перекрываются в последовательности YAC № 1, № 2, № 3.

Вставки ДНК из 3000 YAC-клонов примерно равны по длине геному человека. В анализ на перекрывание YAC-колонов взяли 30000 клонов, с тем чтобы каждая точка генома перекрывалась несколькими клонами. Вначале неизвестно было, как они расположены, но в среднем каждая точка генома перекрывалась 10 раз. Было использовано порядка 3000 STR-маркеров, и посмотрели, эти как маркеры и клоны друг с другом перекрываются. В качестве метода, выявляющего присутствие генетического маркера в составе YAC-клонов, использовался ПЦР. На заключительном этапе составления физической карты генома человека в этих 30 000 YAC-клонов, выявлено присутствие примерно 30000 маркеров. Это один маркер на 100 000 пар нуклеотидов. Расстояние между концами YAC-клонов также составило 100 000 п.н. (при длине клона 1 млн. п.н.). Картирование проводили на роботизированных машинах, которые проводили приблизительно по 300 000 ПЦР-реакций в день. Позволило расставить в контиг все YAC клоны. Предполагалось, что они будут непосредственно секвенироваться. Однако в дальнейшем была использована друга схема секвенирования клонов. Картированные YAC-клоны часто использовали для поиска генов, находящихся во вставке YAC, а к сиквенсу этот этап не привел.

Перекрывание можно также посмотреть по

1 ... 34 35 36 37 38 39 40 41 42 ... 137
Перейти на страницу: