Шрифт:
Закладка:
— А затем, — перебил Нулик (ему не терпелось показать, что он всё понял), — прибавим к 40 три в четвёртой степени, то есть 81, и получим 121. Значит, для следующего числа надо к 121 прибавить 3, взятое в пятой степени, то есть 243. 121 + 243 = 364. Вот такой номер стоял на очередном автомате.
— Молодчина! — Таня погладила президента по взъерошенному затылку. — Может, скажешь, как решить эту задачу по-другому?
— А разве можно?
— Представь себе, можно. Чтобы получить любое число этого ряда, надо предыдущее умножить на три и прибавить единицу. Умножь 121 на три и прибавь единицу — получишь 364.
— Что ж, — подытожил я, — Таня разобралась в этом вопросе ничуть не хуже Единички. А посему двинулись дальше.
— Куда? — деловито осведомился президент. — Обратно, к Тимирязеву, или вперёд, к Пушкину?
— Небольшое, брат, расхождение. Ты о памятниках, а я о памятном значке. О том, который собирались сделать Магистр и Единичка. На нём должен быть круг с описанным четырёхугольником. Не помнишь?
— Склероз! — понимающе кивнул Сева.
— А вот и помню, — огрызнулся президент. — Магистр ещё захотел сперва вычертить четырёхугольник, а уж потом вписать в него круг.
— Это он напрасно, — сказал Олег. — Не во всякий четырёхугольник можно вписать круг, зато четырёхугольник можно описать около всякого круга. Единичка, кстати, так и сделала: сперва вычертила круг. Магистр предложил описать около этого круга четырёхугольник со сторонами 5, 6, 9 и 10. Но умница Единичка поменяла стороны местами и расположила их так: 5, 6, 10 и 9.
— А почему, собственно, умница?
— Да потому, что во всяком описанном около круга четырёхугольнике суммы противоположных сторон должны быть равны между собой. 5 + 10 = 15 и 6 + 9 тоже равно пятнадцати.
Не сомневаюсь, что втайне президент, конечно, огорчился своим невежеством, но виду не подал.
— Это что! А я вот такое заметил… Магистр уверяет, что когда «Улитка» покачивалась на рейде, матросы подали трап, и пассажиры спустились прямо на берег. Ну не смехота ли?! Ведь судно-то стояло на рейде, значит, далеко от берега. Что ж, пассажиры так в воду и шлёпались?
— Скорее всего, они переправлялись на берег в шлюпках, — предположила Таня. — А вот на берегу… на берегу Магистр и Единичка попали в гости к плетельщику циновок. Единичке очень понравилась циновка с изображением лошади, и Магистр сказал, что это лошадь Семёнова-Тян-Шанского. Конечно же, он имел в виду совсем другого путешественника — Пржевальского, который обнаружил в Центральной Азии дикую лошадь неведомой породы. Её-то и назвали лошадью Пржевальского.
— Так и быть, простим Магистру эту оплошность, — примирительно сказал Сева. — В конце концов, он всё-таки математик, а не естественник. Но то, что этот математик не смог вычислить длину средней линии равнобедренной трапеции, описанной около круга, это уж стыдно! Ему ведь была известна длина боковой стороны трапеции: 25 сантиметров. Как же он позабыл, что средняя линия такой трапеции как раз и равна её боковой стороне?
— Это почему?
— Да потому, что суммы противоположных сторон описанной трапеции равны между собой. А средняя линия равна полусумме её оснований, то есть длине одной из боковых сторон.
— Хорошее объяснение, — сказал я.
— Очень хорошее, — согласился Нулик. — В особенности потому, что последнее.
— А ты небось соскучился по фруктовому соку? — поддразнил Олег. — Придётся тебе потерпеть, пока мы не разберёмся в последнем — действительно последнем вопросе.
— А, это о циновках! — вспомнил Нулик.
— Да, о циновках. Магистр выбрал циновку в 10 к. метров. Понятно: ведь он занимал каюту в 10 квадратных метров. Но циновка в каюте почему-то не уместилась. Площадь её оказалась в 3,14 раза больше. Магистр очень удивился. А дело было в том, что плетельщик за единицу площади принял не квадрат со стороной, равной единице, а круг с единичным радиусом. Стало быть, в циновке было не 10 квадратных, а 10 круговых метров.
Президент скорчил недоверчивую мину:
— Да разве такое возможно?
— Отчего же? Всё дело в условности. Условно за единицу площади принят квадрат. Но вместо квадрата мог быть и прямоугольник, и треугольник, а значит, и круг — в зависимости от того, что в каждом отдельном случае удобней. Вот, например, на плоскости удобней измерять расстояние прямыми линиями. А на сфере приходится измерять кривыми — меридианами, параллелями…
— Но какую же циновку надо было выбрать Магистру для каюты в 10 квадратных метров? — не унимался Нулик.
— Площадью примерно в 3,18 кругового метра.
— Зачем мне результат? Расскажи лучше, как ты его вычислил!
— Сам разберёшься, — строго сказал Олег.
Но президент и не думал ни в чём разбираться: он уже шагал к павильону «Воды — соки»…
Путевые заметки рассеянного Магистра
В ДЕБРЯХ АФРИКИ
Наша «Улитка» неслась на всех парусах.
Мы уже обогнули самый южный выступ Африканского материка — мыс Доброй Надежды, вышли в Индийский океан, затем вошли в какой-то пролив и чуть не врезались в скалистый берег Европы. Я этому даже обрадовался — так приятно снова увидеть родную землю! Но капитан огорчил меня, сказав, что задерживаться здесь не намерен: просто он сбился с пути и собирается немедленно повернуть к Африканскому континенту.
Не прошло и двух часов, как «Улитка» вошла в устье реки Замбези и стала продвигаться к северу. Мы жадно любовались живописными тропическими берегами этой судоходной реки.
Через три дня и три ночи мы приплыли в Конго. А так как река здесь кончилась и «Улитка» дальше плыть не могла, нам с Единичкой ничего не оставалось, как продолжать путешествие пешком.
Я был совсем не прочь побродить по недоступным пампасам и повторить маршрут знаменитого путешественника Ливингстона. Ведь именно сюда он и направился на поиски своего заблудившегося коллеги Стэнли.
Но прогулки в тропическом лесу, знаете ли, чреваты опасностями. Нас чуть не съели тигры. К счастью, я вовремя разжёг костёр, и хищники со злобным рычанием скрылись в дебрях.