Шрифт:
Закладка:
Так, Менделеев предсказывал для экабора атомную массу 44 и формулу оксида Eb2O3; атомная масса скандия равняется 45, формула его оксида Sc2O3. Конечно, нельзя сказать, что сбылись все предсказания Дмитрия Ивановича – так, он считал, что карбонат экабора будет нерастворим в воде, но карбонат скандия растворим. Не сбылось предсказание Менделеева и о способе открытия нового элемента. Дмитрий Иванович предполагал, что экабор откроют спектрально, однако у скандия нет чётких спектральных линий, и этот метод анализа для него бесполезен. Впрочем, идею о способе открытия Менделеев предположил не на основании Периодического закона, а просто на том, что в 1870-е годы спектральные исследования начали теснить привычные химикам прошлых лет методы химического анализа. Сходство свойств соединений скандия со свойствами гипотетического экабора заметил не Нильсон, а другой шведский химик – Пер Теодор Клеве, тоже специализировавшийся по редкоземельным элементам, так что за эмпирическую проверку теоретических построений Дмитрия Ивановича благодарить нам нужно двух человек – Нильсона и Клеве. От открытия оксида скандия до выделения чистого металлического скандия прошло более восьмидесяти лет – оксид скандия отличается химической инертностью, в образцах солей и оксидов скандия могут встречаться примеси других редкоземельных элементов. Всё это привело к тому, что первые 450 граммов чистого металлического скандия были выделены только в 1960 году.
Будучи первым d-элементом, скандий достаточно сильно отличается от других d-элементов химическими свойствами, тем, что для него не характерно разнообразие валентных состояний и степеней окисления переходных металлов, говоря точнее – как и у бора, по свойствам которого предсказывал свойства скандия Менделеев, скандий может быть в своих соединениях только трёхвалентным.
Соединения скандия интенсивно применяются в органической химии – его соли являются сильными кислотами Льюиса (веществами, способными «захватить» электронную пару другой молекулы), что позволяет активировать органические молекулы для участия в химических превращениях. С помощью скандия также удается получать естественное искусственное освещение. Понятно, это звучит как оксюморон, но дело в том, что небольшие добавки йодида скандия в ртутные лампы дают свет, по параметрам практически неотличимый от дневного солнечного освещения. Светильники, в которых используется йодид скандия, применяются в кинопроекторах и для прожекторов, освещающих аэропорты и стадионы (скорее всего, на чемпионате мира по футболу 2018 года скандию пришлось внести свою посильную лепту).
Небольшие добавки скандия к алюминию позволяют получить очень легкий и прочный сплав, из которого изготавливают рамы гоночных и горных велосипедов. В наше время в велостроении алюмо-скандиевый сплав уступает в популярности титановым сплавам и композитным материалам на основе углеродных волокон, однако до сих пор применяется в конструкции «двухколёсных коней».
Биологической роли скандий не играет. Его мало в земной коре (около 10 граммов на одну тонну), хотя известны столь же редкие переходные металлы, выполняющие тем не менее хоть какую-то работу в клетке. Второй, а точнее, главной причиной является то, что скандий проявляет только одно валентное состояние и не может участвовать в окислительно-восстановительных процессах, протекающих в клетке.
22. Титан
Элемент №22, титан, как и стоящий перед ним в Периодической системе скандий, не является биологически значимым элементом – его атомы не принимают участия ни в одном биохимическом процессе.
Тем не менее, если в организме человека скандий и можно найти, то только в следовых количествах, то количество титана в некоторых человеческих телах исчисляется граммами и десятками граммов (думаю, что в моём теле титана наберётся на пару граммов) – химическая инертность титана делает этот металл «физиологически дружественным», из-за чего его применяют для изготовления имплантов зубов, искусственных суставов и других протезов, которые должны непосредственно контактировать с тканями организма.
Правда, на практике преимущественно применяется не металлический титан, а его оксиды. В мире ежегодно используется около четырёх миллионов тонн оксидов титана: рутила и анатаза, каждый из которых отвечает формуле TiO2 – это 95% случаев применения титана. Те читатели, кто уже изучал органическую химию, знают, что органические вещества с одинаковым составом могут различаться строением и свойствами – в органике это явление называется изомерией. Однако различие строения и свойств при одинаковом составе характерно не только для органических веществ, но и для неорганических. Иногда, когда неорганические вещества образуют молекулы, это явление также называется изомерией, но для оксидов титана, образующих не молекулы, а атомные кристаллические решетки, наличие нескольких форм, отвечающих формуле TiO2, называется полиморфизмом. Кристаллические решётки слегка различаются межатомным расстоянием титан-кислород, расположением атомов титана и кислорода друг относительно друга, и вуаля – твердость рутила по шкале Мооса составляет 7 единиц, а анатаза – 5,5 единицы.
На практике преимущественно применяется более мягкий анатаз – он нужен везде, где нам нужен химический инертный, нерастворимый и не обладающий токсичностью порошок белого цвета. Диоксид титана применяется для изготовления таблеток лекарств, входит в состав зубных паст. В пищевой промышленности оксид титана, промаркирован как пищевая добавка E171, с помощью которой добавляют белизны в кондитерские изделия, сыры и мороженное. Оксид титана применяется в солнцезащитных кремах – он практически непрозрачен для ультрафиолета. То, что оксиды титана поглощают ультрафиолетовое излучение, позволяет использовать эти вещества как фотокатализаторы. Закон сохранения энергии отменить нельзя, и, поглотив энергию УФ-излучения, фотокатализатор рассеивает её, испуская фотоэлектроны, которые способствуют формированию свободных радикалов, которые, например, могут расщеплять воду на кислород и водород. Что касается кремов против загара, очевидно, что одна потенциальная опасность для здоровья (ультрафиолет) меняется на другую (активные радикалы): входящие в состав солнцезащитных кремов частицы TiO2 покрывают защитным слоем из оксида кремния или оксида алюминия. В других случаях