Онлайн
библиотека книг
Книги онлайн » Разная литература » Таблица Менделеева. Элементы уже близко - Аркадий Искандерович Курамшин

Шрифт:

-
+

Закладка:

Сделать
1 ... 18 19 20 21 22 23 24 25 26 ... 86
Перейти на страницу:
элемент скандием в честь Скандинавии. Открытие скандия, пусть и входящего в состав оксида, было очень важно, так как за девять лет до этого Менделеев, пользуясь Периодическим законом и тенденциями в изменениях свойств элементов и их соединений, предсказал существование десяти на то время ещё неизвестных элементов, весьма детально расписав при этом свойства четырёх «белых пятен». Одним элементом из этой четвёрки был элемент, свойства которого были близки бору, названный Менделеевым «экабор» (подобный бору). Экспериментально изученные свойства соединений скандия во многом совпадали с предсказаниями Дмитрия Ивановича, демонстрируя, что Периодическая система – не просто способ систематизации, а отражение фундаментальных законов природы.

Так, Менделеев предсказывал для экабора атомную массу 44 и формулу оксида Eb2O3; атомная масса скандия равняется 45, формула его оксида Sc2O3. Конечно, нельзя сказать, что сбылись все предсказания Дмитрия Ивановича – так, он считал, что карбонат экабора будет нерастворим в воде, но карбонат скандия растворим. Не сбылось предсказание Менделеева и о способе открытия нового элемента. Дмитрий Иванович предполагал, что экабор откроют спектрально, однако у скандия нет чётких спектральных линий, и этот метод анализа для него бесполезен. Впрочем, идею о способе открытия Менделеев предположил не на основании Периодического закона, а просто на том, что в 1870-е годы спектральные исследования начали теснить привычные химикам прошлых лет методы химического анализа. Сходство свойств соединений скандия со свойствами гипотетического экабора заметил не Нильсон, а другой шведский химик – Пер Теодор Клеве, тоже специализировавшийся по редкоземельным элементам, так что за эмпирическую проверку теоретических построений Дмитрия Ивановича благодарить нам нужно двух человек – Нильсона и Клеве. От открытия оксида скандия до выделения чистого металлического скандия прошло более восьмидесяти лет – оксид скандия отличается химической инертностью, в образцах солей и оксидов скандия могут встречаться примеси других редкоземельных элементов. Всё это привело к тому, что первые 450 граммов чистого металлического скандия были выделены только в 1960 году.

Будучи первым d-элементом, скандий достаточно сильно отличается от других d-элементов химическими свойствами, тем, что для него не характерно разнообразие валентных состояний и степеней окисления переходных металлов, говоря точнее – как и у бора, по свойствам которого предсказывал свойства скандия Менделеев, скандий может быть в своих соединениях только трёхвалентным.

Соединения скандия интенсивно применяются в органической химии – его соли являются сильными кислотами Льюиса (веществами, способными «захватить» электронную пару другой молекулы), что позволяет активировать органические молекулы для участия в химических превращениях. С помощью скандия также удается получать естественное искусственное освещение. Понятно, это звучит как оксюморон, но дело в том, что небольшие добавки йодида скандия в ртутные лампы дают свет, по параметрам практически неотличимый от дневного солнечного освещения. Светильники, в которых используется йодид скандия, применяются в кинопроекторах и для прожекторов, освещающих аэропорты и стадионы (скорее всего, на чемпионате мира по футболу 2018 года скандию пришлось внести свою посильную лепту).

Небольшие добавки скандия к алюминию позволяют получить очень легкий и прочный сплав, из которого изготавливают рамы гоночных и горных велосипедов. В наше время в велостроении алюмо-скандиевый сплав уступает в популярности титановым сплавам и композитным материалам на основе углеродных волокон, однако до сих пор применяется в конструкции «двухколёсных коней».

Биологической роли скандий не играет. Его мало в земной коре (около 10 граммов на одну тонну), хотя известны столь же редкие переходные металлы, выполняющие тем не менее хоть какую-то работу в клетке. Второй, а точнее, главной причиной является то, что скандий проявляет только одно валентное состояние и не может участвовать в окислительно-восстановительных процессах, протекающих в клетке.

22. Титан

Элемент №22, титан, как и стоящий перед ним в Периодической системе скандий, не является биологически значимым элементом – его атомы не принимают участия ни в одном биохимическом процессе.

Тем не менее, если в организме человека скандий и можно найти, то только в следовых количествах, то количество титана в некоторых человеческих телах исчисляется граммами и десятками граммов (думаю, что в моём теле титана наберётся на пару граммов) – химическая инертность титана делает этот металл «физиологически дружественным», из-за чего его применяют для изготовления имплантов зубов, искусственных суставов и других протезов, которые должны непосредственно контактировать с тканями организма.

Правда, на практике преимущественно применяется не металлический титан, а его оксиды. В мире ежегодно используется около четырёх миллионов тонн оксидов титана: рутила и анатаза, каждый из которых отвечает формуле TiO2 – это 95% случаев применения титана. Те читатели, кто уже изучал органическую химию, знают, что органические вещества с одинаковым составом могут различаться строением и свойствами – в органике это явление называется изомерией. Однако различие строения и свойств при одинаковом составе характерно не только для органических веществ, но и для неорганических. Иногда, когда неорганические вещества образуют молекулы, это явление также называется изомерией, но для оксидов титана, образующих не молекулы, а атомные кристаллические решетки, наличие нескольких форм, отвечающих формуле TiO2, называется полиморфизмом. Кристаллические решётки слегка различаются межатомным расстоянием титан-кислород, расположением атомов титана и кислорода друг относительно друга, и вуаля – твердость рутила по шкале Мооса составляет 7 единиц, а анатаза – 5,5 единицы.

На практике преимущественно применяется более мягкий анатаз – он нужен везде, где нам нужен химический инертный, нерастворимый и не обладающий токсичностью порошок белого цвета. Диоксид титана применяется для изготовления таблеток лекарств, входит в состав зубных паст. В пищевой промышленности оксид титана, промаркирован как пищевая добавка E171, с помощью которой добавляют белизны в кондитерские изделия, сыры и мороженное. Оксид титана применяется в солнцезащитных кремах – он практически непрозрачен для ультрафиолета. То, что оксиды титана поглощают ультрафиолетовое излучение, позволяет использовать эти вещества как фотокатализаторы. Закон сохранения энергии отменить нельзя, и, поглотив энергию УФ-излучения, фотокатализатор рассеивает её, испуская фотоэлектроны, которые способствуют формированию свободных радикалов, которые, например, могут расщеплять воду на кислород и водород. Что касается кремов против загара, очевидно, что одна потенциальная опасность для здоровья (ультрафиолет) меняется на другую (активные радикалы): входящие в состав солнцезащитных кремов частицы TiO2 покрывают защитным слоем из оксида кремния или оксида алюминия. В других случаях

1 ... 18 19 20 21 22 23 24 25 26 ... 86
Перейти на страницу:

Еще книги автора «Аркадий Искандерович Курамшин»: