Онлайн
библиотека книг
Книги онлайн » Разная литература » Как было получено изображение обратной стороны Луны - Геральд Борисович Богатов

Шрифт:

-
+

Закладка:

Сделать
1 ... 3 4 5 6 7 8 9 10 11 ... 13
Перейти на страницу:
электроны попадали с каждого предыдущего эмиттера на последующий, а не пролетали мимо. Если часть электронов минует один или несколько эмиттеров, не «умножаясь» на них, то общий коэффициент усиления снижается. Для того, чтобы вторичные электроны не пролетали мимо соседних эмиттеров, им придана специальная ковшеобразная форма. Такая форма эмиттеров была найдена после тщательных исследований.

Последний эмиттер отличается по форме от остальных и выполнен так, чтобы анод можно было поместить достаточно близко от его поверхности. При этом пространственный заряд, который может образоваться скапливающимися электронами, рассасывается, чем обеспечивается линейность усиления. Анод в описываемом здесь фотоумножителе представляет собой рамку с натянутыми на ней проволочными нитями.

По такой схеме построена умножающая часть многих фотоэлектронных умножителей, выпускаемых нашей промышленностью.

Существует несколько типов фотоэлектронных множителей, в которых электронные потоки с одного эмиттера на другой направляются несколько иначе. В одном случае для направления электронных потоков используется специальный, общий для всех эмиттеров электрод — сетка. В другом случае эмиттеры умножителя устроены так, что первичные электроны бомбардируют их с одной стороны, а вторичные электроны выходят с противоположной стороны; такие эмиттеры располагаются один за другим.

В третьем случае фокусировка электронов осуществляется взаимодействием магнитного и электрического полей и движущихся электронов.

Сигналы на нагрузочном сопротивлении фотоэлектронного умножителя ничтожны по своей величине, и потому они подводятся к усилителю, а после усиления и смешения с синхронизирующими и гасящими импульсами, создаваемыми в схеме синхрогенератора, поступают в радиопередатчик. В передатчике высокочастотные сигналы модулируются сигналами изображения. Процесс модуляции, как известно, заключается в том, что в соответствии с изменениями величины и частоты сигнала изображения происходит изменение одного из параметров колебаний высокой частоты (амплитуды, фазы или частоты). Применяются и другие виды модуляции. Так, например, в радиофототелеграфии сигналы изображений часто передают методами амплитудной и частотной модуляций вспомогательной несущей частоты. Полученным частотно-модулированным сигналом модулируют затем амплитуду колебаний высокой несущей частоты радиопередатчика.

Последние виды модуляции хороши тем, что прием сигналов оказывается мало зависящим от постоянства условий распространения электромагнитных колебаний и положения передающих антенн по отношению к приемным антеннам. В приемном устройстве модулированные по частоте колебания после соответствующего усиления подаются на вход ограничителя, где амплитуды сигнала выравниваются и тем самым ослабляется влияние условий распространения и других помех на качество воспроизведения изображения. С выхода ограничителя сигналы подаются на помехозащитные устройства, а затем на частотный детектор, На выходе детектора получают сигналы изображения, которые усиливаются и подаются к устройствам записи сигналов изображения или к воспроизводящим устройствам. Применение этих методов передачи неподвижного изображения оказывается возможным при узкой полосе частот. При широкой полосе передаваемых частот чаще используют амплитудную модуляцию несущей частоты. При этом, однако, передача получается наименее защищенной от различных помех. Амплитудная модуляция используется преимущественно для передачи сигналов движущегося изображения в телевизионном вещании.

Передача сигналов с борта космической станции на Землю

Важнейшей проблемой, возникшей при фотографировании изображения Луны, явилась проблема передачи радиосигналов на большие расстояния. Как известно, дальность действия систем радиосвязи зависит от излучаемой мощности радиопередатчика, направленности антенн, чувствительности приемных устройств, потерь при излучении и приеме и т. д. Создавая межпланетную автоматическую станцию, советские специалисты должны были решить сложные задачи конструирования бортовой и наземной аппаратуры. Конструкторы и ученые стремились к тому, чтобы бортовая аппаратура космической станции имела минимальный объем, небольшой вес и потребляла немного электрической энергии. Большое внимание было уделено надежности работы бортовых радиотехнических устройств.

Рассмотрим теперь подробнее, как осуществляется передача сигнала с космической станции. Для этого представим себе передающую антенну космической лаборатории в виде точечного излучателя (рис. 12), излучающего энергию равномерно во всех направлениях. На расстоянии R от точки излучения вся излучаемая в пространство энергия будет проходить через поверхность воображаемой сферы, имеющей радиус R. Приемная антенна на Земле способна уловить энергию электромагнитных колебаний, пронизывающих лишь ограниченную площадь, которую мы обозначим Sпр.

Отношение энергии Рпр, принятой на Земле, ко всей энергии РК, излучаемой бортовым радиопередатчиком, можно определить из выражения

т. е. эта энергия будет равна отношению площади приемной антенны к площади сферы, описанной радиусом, равным расстоянию между точками приема и передачи.

Рис. 12. К расчету излучаемой передатчиком межпланетной станции энергии, достигающей наземной приемной антенны.

Величина SПР зависит от геометрической конфигурации приемной антенны. Допустим, что SПР = 1 м2. Тогда при максимальном удалении радиопередатчика автоматической межпланетной станции от Земли, равном 470 000 км (с этого расстояния именно и производилась передача) получим:

Полученный результат говорит, что при наибольшем удалении от Земли каждый ватт мощности, излучаемой радиопередатчиком автоматической межпланетной станции, соответствует на земной поверхности потоку энергии, примерно в три раза меньшему одной миллиардной от одной миллиардной доли ватта на каждый квадратный метр земной поверхности. В произведенном подсчете не учтены потери энергии на поглощение в ионизированных слоях атмосферы и на отражение от Земли и верхних участков атмосферы. Таким образом, действительная доля принимаемой энергии будет даже меньше расчетной. Очевидно, что уверенный прием таких слабых сигналов осуществлять очень трудно.

Что же можно предпринять для увеличения энергии принимаемых радиосигналов?

Для этой цели можно было бы использовать антенны направленного действия. Направленным действием, как известно, называют способность антенны излучать энергию в нужном направлении (если речь идет о передающей антенне) или принимать сигналы с нужного направления (если речь идет о приемной антенне). Из этого следует, что желательно было бы передающие антенны автоматической межпланетной станции сконструировать так, чтобы по возможности можно было облучать только ту площадь Земли, на которой установлены приемные антенны, и не излучать энергии в других направлениях.

Однако добиться направленного действия антенны космической лаборатории трудно из-за вращения станции вместе с установленными на ней антеннами, т. е. вследствие изменения ориентации антенны по отношению к земным наблюдательным пунктам. Для того, чтобы связь со станцией не прекращалась при ее вращении, антенны станции излучают радиосигналы равномерно во всех направлениях, так что мощность излучения, приходящаяся на единицу поверхности, будет одинаковой для всех точек воображаемой сферы, в центре которой находится передатчик станции.

Ввиду того что в наземную приемную антенну попадает лишь часть излучаемой энергии, которая определяется отношением эффективной площади приемной антенны к поверхности воображаемой сферы с радиусом, равным расстоянию от космической станции до при-емкого пункта, то вполне естественным является стремление использовать большие приемные антенны, обладающие большим коэффициентом направленного действия.

В теории приемных антенн доказывается, что наибольшая полезная мощность, которую способна отдать приемная антенна на вход приемника, выражается формулой

1 ... 3 4 5 6 7 8 9 10 11 ... 13
Перейти на страницу: