Онлайн
библиотека книг
Книги онлайн » Разная литература » На службе у войны: негласный союз астрофизики и армии - Нил Деграсс Тайсон

Шрифт:

-
+

Закладка:

Сделать
1 ... 64 65 66 67 68 69 70 71 72 ... 139
Перейти на страницу:
NASA и Джодрелл-Бэнк, «Пионер-5», напротив, прошел без сучка и задоринки. 11 марта 1960 года, спустя 12 минут после старта ракеты с мыса Канаверал, «Марк I» начал отслеживать полет.

На этот раз радиотелескоп – «единственный инструмент на Земле, с помощью которого можно было хотя бы надеяться передавать на зонд сигналы достаточно сильные, чтобы преодолеть расстояние в десятки миллионов миль», – не просто отслеживал положение космического аппарата, но также передавал на него команды и принимал научные данные, полученные в ходе экспериментов на его борту:

В 1:25 пополудни, когда «Пионер» находился на расстоянии 5000 миль от Земли, нажатием кнопки в трейлере в Джодрелл-Бэнк к зонду был послан командный сигнал на подрыв пироболтов, связывавших полезную нагрузку с ракетой-носителем. В туже секунду характер принимаемых сигналов изменился. Мы поняли, что «Пионер V» отделился от носителя, находился на верном курсе и продолжал передавать сигналы. «Пионер» продолжал отвечать на команды, посылаемые ему посредством телескопа, на протяжении всего последовавшего дня; когда вечером он исчез за горизонтом, он находился от нас уже на расстоянии 70 000 миль. Следующим вечером он был уже по ту сторону Луны[303].

Радиотелескоп поддерживал контакт с космическим кораблем почти четыре месяца. Последний сеанс связи состоялся 26 июня 1960 года, когда корабль был на расстоянии в 36 миллионов километров от Земли. В глубоком вакууме межпланетного пространства, где ничего не может повлиять на его траекторию, «Пионер-5» и сейчас остается на орбите вокруг Солнца, совершая один оборот за 312 дней.

II

В то время, как радиоволны оказались для человечества полезными во многих отношениях, как в бытовом, так и в космическом масштабе, гамма-лучи полезными обычно не считаются – скорее наоборот.

Гамма-излучение, занимающее высокоэнергетический конец электромагнитного спектра, было открыто в 1900 году как побочный продукт радиоактивности. К 1950-м сложилось представление, что гамма-лучи могут приходить на Землю из космического пространства, но зарегистрированы они были только в 1961 году короткоживущим детектором нового типа, установленным на борту запущенного NASA спутника Explorer XI.

Как и рентгеновские лучи, гамма-излучение трудно зарегистрировать – оно проходит сквозь обычные линзы и зеркала, и поэтому его нельзя сфокусировать, как мы фокусируем радиоволны и видимый свет. Что годится для операций с радиоволнами, микроволнами, инфракрасным, видимым и ультрафиолетовым излучением, не работает с рентгеновскими или гамма-лучами. Приемники в этих полосах спектра требуют применения новых принципов регистрации. Фотопленка тоже регистрирует только видимый и ультрафиолетовый свет; чтобы записать сигналы от объекта, излучающего на других длинах волн, требуются новые методы детектирования.

Приемник на борту «Эксплорера XI» представлял собой устройство, называемое сцинтиллятором. Оно отдаленно похоже на телескоп – примерно так же, как кит на паука. Сцинтиллятор – это небольшая пластина энергетически чувствительного материала (например, йодистого цезия), производящая слабые световые вспышки – или выбросы заряженных частиц – каждый раз, когда сквозь нее проходит гамма-излучение. Если эти вспышки усилить фотоумножителем, получится приемник гамма-лучей. Измеряя энергию выброшенных сцинтиллятором заряженных частиц, вы можете определить, какого рода излучение их породило. За четыре месяца полета «Эксплорера XI» его приемник занимался сбором данных на протяжении двадцати трех дней и отметил за это время целых двадцать два достоверных случая регистрации гамма-лучей.

Хоть мы называем «гамма-лучами» электромагнитное излучение с самыми короткими длинами волн (и самой высокой энергией), они занимают очень широкую полосу спектра. Кроме гамма-лучей во Вселенной есть и другие переносчики сверхвысоких энергий: например, так называемые космические лучи, состоящие не из квантов света, а из частиц. Но едва ли хоть какая-то часть ежедневной порции приходящих к Земле из глубин космоса гамма-лучей и космических лучей достигает поверхности нашей планеты. Атмосферный озон – трехатомная модификация молекулы кислорода – хорошо, хоть и не на 100 %, защищает нас от них, а заодно и от ультрафиолетового и рентгеновского излучения, имеющего солнечное или какое-либо иное космическое происхождение. Поэтому, чтобы надежно зарегистрировать гамма-лучи, требуются специализированные спутники на заатмосферных орбитах.

Как вы, возможно, уже подумали, высокоэнергетическое излучение должно порождаться высокоэнергетическими явлениями. Попытайтесь представить одновременную детонацию всех когда-либо изготовленных ядерных бомб: и существующих, и взорванных во время войны или в ходе испытаний, и тех, которые были демонтированы во имя мира. Представьте звезду, в сто раз более массивную, чем Солнце, коллапсирующую, обрушивающуюся внутрь себя в момент своей гибели. Или представьте раскинувшуюся в пространстве галактику, образовавшуюся в течение первого миллиарда лет существования нашей Вселенной, и колоссальную черную дыру, скрывающуюся в ее центре, заключающую в себе вещество многих миллиардов давно умерших звезд и непрерывно заглатывающую все, что находится в поле ее притяжения. Или подумайте об остатке взорвавшейся гигантской звезды – образовании столь плотном, что наперсток его весил бы сотню миллионов тонн, – вращающемся в далеком космосе с частотой в десятки тысяч оборотов в секунду и сливающемся с обычной звездой-компаньоном. Все эти яростно взаимодействующие конфигурации материи, эти события, происходящие с выделением сверхвысокой энергии, наблюдаются нами именно в сверхвысокоэнергетическом диапазоне – например, в виде внезапных, кратковременных, зачастую узконаправленных выбросов, всплесков гамма-излучения: взрывов астрономического масштаба. Одна такая вспышка может затмить своим блеском целую галактику – как будто энергия сотен миллиардов Солнц сконцентрировалась в несколько мгновений ослепительного сияния. Невероятно эффектно… и смертельно для того, кто окажется поблизости[304].

Гамма-всплески происходят где-то в дальней Вселенной в среднем раз в день. Относительно более слабые длятся меньше секунды: более редкие, сверхвысокоэнергетические – до нескольких минут. Источник этой невероятной энергии – сочетание гравитационных, вращательных, магнитных и термоядерных процессов. Объект, высвобождающий эту энергию, может быть сверхновой, килоновой, гиперновой, блазаром или квазаром. Эта энергия может порождаться веществом непосредственно перед его падением в черную дыру, а может и ядерным взрывом на Земле. Повторим: ядерным взрывом здесь, на Земле. Человеческий ум задумал, изобрел и привел в действие эквивалент одного из самых смертельных явлений природы.

Мы все еще до конца не понимаем, каков механизм возникновения космических гамма-всплесков. Но еще до того, как астрофизики впервые узнали о существовании космического гамма-излучения, все – как ученые, так и политики – уже были уверены, что на Земле оно появится там и тогда, где и когда будет взорвана термоядерная бомба[305]. Неважно, будет этот взрыв испытанием или боевой атакой, так же как не имеет значения, будет он произведен в пустыне, в центре острова Манхэттен или на Луне, – он будет сопровождаться выбросом смертоносных гамма-лучей. И не успела окончиться вторая глобальная война XX века, как проектирование опустошительного, всеуничтожающего оружия пошло полным ходом, рождая ужас и взаимное недоверие как среди его непосредственных разработчиков, так и среди свидетелей этого процесса. Сам Эйнштейн, прекрасно осведомленный о появившемся в мире новейшем средстве всеобщего уничтожения,

1 ... 64 65 66 67 68 69 70 71 72 ... 139
Перейти на страницу: