Шрифт:
Закладка:
В качестве отступления я должен отметить, что работать с E.coli неопасно. На самом деле о ней периодически вспоминают в новостях в связи с очередными массовыми пищевыми отравлениями. К тому же она способна вызывать некоторые очень серьезные и даже смертельные болезни. Но большинство типов, включая штамм, с которым работает Ленски, безвредны. На самом деле многие люди являются носителями больших популяций полезных штаммов E.coli, которые живут в пищеварительном тракте и осуществляют там важную работу, такую как выработка витамина К2 и борьба с вредными бактериями. Более того, лабораторные штаммы адаптировались к жизни в стеклянных колбах и утратили способность жить в человеческом организме. Так что они явно не представляют никакой угрозы. Ленски и сотрудники его лаборатории работают в стандартных лабораторных халатах и даже не надевают перчаток, не говоря уже о защитных костюмах.
24 февраля 1988 года[79] солнечным и не по сезону теплым для Южной Калифорнии днем Ленски взял обычную лабораторную чашку Петри. E.coli, как и другие бактерии, бесполая. Каждая клетка просто делится на две идентичные дочерние клетки. Когда клетку E.coli кладут на поверхность чашки Петри, она начинает безостановочно делиться, производя в конечном итоге маленькую горку из миллионов клеток, каждая из которых является идентичным потомком первой исходной клетки.
Эти горки называются колониями. Дно чашки, которую взял Ленски, было покрыто слоем клейкого полупрозрачного питательного желатина с десятками таких колоний, вырастающих на ее поверхности. Все эти колонии образовались из одиночных клеток E.coli лабораторного штамма под названием REL 606[46]. Ленски взял маленькую стерильную металлическую иголку и легонько коснулся ею одной из колоний, собрав на кончике сотни тысяч идентичных клеток. Затем он погрузил кончик иглы в жидкость объемом десять миллилитров в стерильной стеклянной колбе. Вот так зародилась еще одна долгосрочная популяция. Повторив данную процедуру одиннадцать раз, он поместил десяток колб[47] – каждая меньше чайной чашки – в морозильник при температуре 98,6 градусов по Фаренгейту (температура внутренних органов человека).
В этом эксперименте был еще один важный ингредиент. Исследователи, изучающие E.coli, используют широкий выбор «блюд», которыми они потчуют своих микроскопических питомцев. Кто-то кормит их стандартными биохимическими лабораторными питательными веществами, такими как измельченные в порошок кусочки дрожжевых грибков или белок сыворотки. А кто-то прибегает к экзотическим ингредиентам вроде овечьей крови или бульона из свиных мозгов и сердец. Диета, которую выбрал Ленски, была необычна сразу в двух аспектах. Во-первых, единственной пищей, которая присутствовала в их жидких жилищах, была глюкоза, моносахарид, который многие организмы используют для насыщения энергией[48]. Во-вторых, в отличие от стандартных лабораторных приготовлений запасы пищи были очень ограничены, причем ровно настолько, чтобы каждый день в течение шести часов популяция стремительно увеличивалась в размерах до тех пор, пока глюкоза не закончится. В этот момент клетки прекращали делиться и терпеливо ждали.
На следующий день кто-то из членов лаборатории откачивал 0,1 миллилитра жидкости из каждой колбы, что составляет один процент содержимого в колбе и, соответственно, один процент популяции E.coli (приблизительно пятьдесят миллионов E.coli), а затем впрыскивал в новую колбу с 9,9 миллилитра свежей жидкости с добавленной в нее глюкозой (лабораторные ученые используют термин «среда» для обозначения тех наполненных питательными веществами мест обитания, в которых живут их подопечные). И тогда цикл начинается заново.
Штамм E.coli, с помощью которого начался этот эксперимент, был предметом исследований, начиная с 1918 года. Но специфические условия данного эксперимента, в особенности низкие и циклично расходуемые уровни глюкозы, были впервые применены на микробах. Вероятно, данная среда создавала сильные селективные воздействия, с тем чтобы скудные ресурсы расходовались эффективно и быстро. Но в отличие от большинства лабораторных селекционных экспериментов Ленски не диктовал, кто будет победителем, а кто – проигравшим, отбирая тех микробов, которые выживут до следующего поколения. Наоборот, он предоставлял микробам возможность самим определять, кого вытеснить, по-своему решая, какая совокупность признаков наиболее пригодна. По этой причине ученый считал свой проект не экспериментом по отбору, а скорее долгосрочным эволюционным экспериментом (для краткости ДЭЭ).
В начале эксперимента все особи в каждой популяции были генетически одинаковы, все идентичные потомки одной материнской клетки. Более того, так как у разных колоний-прародительниц было недостаточно времени, чтобы накопить мутации, то и основатели этих разных популяций, хоть и взятые из разных колоний, также были генетически идентичными. Это означает, что состав двенадцати экспериментальных колб был, по сути, генетически совершенно однороден – не было никаких генетических расхождений ни внутри, ни между популяциями[49]. Лишь со временем по мере возникновения мутаций стали бы заметны различия между популяциями и их способность дивергировать генетически.
Вот так в своем исследовании Ленски обошел проблему, которая возникала при проведении полевых эволюционных экспериментов. Среды во всех колбах были абсолютно идентичны, по крайней мере, настолько, насколько это мог сделать человек. Более того, сами популяции были изначально точными копиями друг друга, генетически одинаковыми. Это была реализация на практике мысленного эксперимента Гулда. Пленка проигрывалась одновременно двенадцать раз в содержимом двенадцати колб, стоявших бок о бок в морозильном контейнере. Одинаковая исходная точка, одинаковая среда. Приведут ли эти одновременные проигрывания эволюционной пленки к параллельным эволюционным итогам? А вдруг хаотичность мутаций – одна происходит в одной колбе, а совершенно другая в другой – подтолкнут процесс эволюции непредсказуемо в разных направлениях? Детерминизм против случая – что победит?
ДОЛГОСРОЧНЫЕ ИССЛЕДОВАТЕЛЬСКИЕ ПРОГРАММЫ дают возможность любому почувствовать себя историком. Вы можете вернуться в прошлое и проследить ход исследования, не только отмечая появление результатов, но и наблюдая за тем, как менялись толкование и выводы, сделанные на основе исследования. Такое ретрорасследование подкрепляется описаниями и публикациями, без которых немыслима академическая жизнь. Чтобы добиться успеха, ученые должны регулярно сообщать о проделанной работе, а это означает, что долгосрочный эксперимент подробно и последовательно отразится в последующих научных публикациях.