Онлайн
библиотека книг
Книги онлайн » Разная литература » Занимательная теория вероятности - Александр Исаакович Китайгородский

Шрифт:

-
+

Закладка:

Сделать
1 ... 53 54 55 56 57 58 59 60 61 62
Перейти на страницу:
в полимерных материалах цепи молекул беспорядочно перепутаны. Перекручивая модельки, можно достаточно убедительно показать, что, во-первых, в спутанных цепях неминуемо образуется огромное число больших пустот, отчего сильно уменьшается плотность вещества (а это противоречит опыту), и, во-вторых, невозможно объяснить поведение легко кристаллизирующихся полимеров таким допущением.

Как выяснилось позже, очень интересное применение молекулярным моделям нашел Полинг. В его лаборатории систематически исследовались структуры аминокислот. В процессе этого исследования, а также для иллюстрации полученных результатов широко использовались объемные модели молекул. Белок, как известно, построен из последовательно соединенных аминокислотных остатков. Что может быть естественнее попытаться собрать из моделей аминокислот кусочек белковой молекулы?

Эта задача была выполнена Полингом в начале пятидесятых годов. Из срезанных шариков-атомов, скрепленных друг с другом стерженьками, была собрана так называемая альфа-спираль. Полинг показал, как изящно и непринужденно складываются атомы в устойчивое спиральное образование. Из этой модели следовали геометрические размеры: шаг спирали, диаметр спирали, которые могли быть сверены с данными рентгеноструктурного анализа уже не аминокислот, а самих белковых молекул.

Работы по упаковке молекул и работы Полинга по изучению фирмы молекул подхватили многие исследователи. К этому времени уже не надо было доказывать, что успешная работа в области исследования структуры сложных органических веществ должна состоять из комбинации рентгеноструктурного анализа и работы с моделями. Но все же деление структурщиков на «ригористов» и «авантюристов» сохранилось. Одни исследователи полагали, что модели надо использовать лишь для проверки результатов, полученных строгим академическим путем, другие считали, что решение сложных проблем обязательно надо начинать с моделей.

При определении структуры гена встретились исследователи обоих кланов, и проблема в конечном счете была решена атакой с двух сторон.

Двойная спираль

Открытие химической природы генетического материала было сделано учеными, изучавшими передачу наследственности у микроорганизмов. Этим веществом оказалась дезоксирибонуклеиновая кислота, которую, чтобы не ломать язык, называют ДНК (дээнка). ДНК содержится в хромосомах всех клеток.

Фундаментальным обстоятельством, добытым исследователями, является то, что при делении клетки количество ДНК удваивается, и притом совершенно точно. Каждое новое существо возникает благодаря слиянию так называемых гамет. Гаметы образуются из половых клеток. Половая клетка, как и всякая клетка, состоит из парного числа хромосом. При ее делении все пары расходятся и каждая гамета получает по одному представителю каждой хромосомной пары. При делении половой клетки и образовании гамет наблюдается уменьшение количества ДНК вдвое.

Эти и некоторые другие сведения, полученные рядом выдающихся генетиков и бактериологов к сороковым годам, позволили достаточно уверенно ставить знак равенства между проблемой структуры гена и задачей определения структуры молекулы ДНК. Во всяком случае, такого мнения держался молодой американский микробиолог Джим Уотсон, когда прибыл на стажировку в Европу в 1951 году.

Уотсон не сразу нашел то самое место, вероятно единственное, где были люди, которые могли ему помочь и принять участие в решении задачи, важность которой ему была очевидна. Этим местом оказалась лаборатория Брэгга, младшего из двух Брэггов, которые 40 лет назад открыли метод рентгеноструктурного анализа, показав, что этот метод позволяет найти расположение атомов в таких «сложнейших» кристаллах, как поваренная соль. Кстати, лаборатория эта сохранила за собой мировое первенство в области определения структур кристаллов с помощью рентгеновских лучей, и все другие английские лаборатории, занимающиеся теми же проблемами, отпочковались в свое время от лаборатории Брэгга.

У Брэгга Джим Уотсон нашел коллегу — физика Фрэнсиса Крика, с которым и приступил к исследованиям. Двухлетняя совместная их работа привела к открытию структуры ДНК.

Ко времени начала дружбы Уотсона и Крика была обнародована работа Полинга по структуре белковой альфа-спирали. Именно это исследование и привело Уотсона и Крика к мысли, что атака на структуру ДНК должна быть сделана тем же методом. Они решили конструировать возможные модели ДНК и сравнить параметры полученных моделей с экспериментальными данными, полученными в другой лаборатории Морисом Уилкинсом и Розалиндой Франклин.

Работа была начата не на пустом месте. Самое главное, им был ясен сам принцип работы с моделями. Атомы надо было размещать так, чтобы они не налезали друг на друга, чтобы вся большая молекула сворачивалась на себя как можно компактнее. При этом нельзя допускать искажения расстояний между химически связанными атомами, не надо также портить и валентные углы.

Что же касается порядка, в котором соединены атомы в огромной линейной молекуле ДНК, то здесь практически все нужные сведения уже были установлены химиками. Было известно, что ДНК — полимерная молекула. Единицей строения ее является нуклеотид, который состоит из соединенных друг с другом фосфатной группы, сахарной группы и основания. Чередованием фосфатных и сахарных групп строится основная цепь этой полимерной молекулы. Основания являются привесками. Было известно, что эти привески бывают четырех сортов: аденин и гуанин — частицы побольше размером, и цитозин и тимин — частицы меньшего размера.

Можно было предполагать, что сахарно-фосфатная часть цепи строго регулярна. Что же касается оснований, то они обязательно должны быть распределены вдоль цепи совершенно нерегулярным образом. Уотсон и Крик уже с самого начала предполагали, что именно в этом разнообразии возможных расположений оснований вдоль цепи молекулы и кроется разнообразие генов.

Собрав модель кусочка молекулы, можно было убедиться в том, что далеко не все конфигурации цепи возможны. Вдохновленные примером Полинга исследователи ДНК поняли, что и эта молекула образует спираль. Но, конечно, это был не единственный довод. Еще в самом начале своей деятельности Уотсон получил рентгенограмму ДНК, в которой Крику, великолепному знатоку теории дифракции рентгеновских лучей, удалось увидеть признаки спирального образования.

Сопоставление с более обширными и тщательными опытными данными Уилкинса и Франклин показало, что одной спиралью не обойдешься. Диаметр спирали, который определялся по рентгенограммам, требовал, чтобы в образовании структуры участвовало несколько спиралей. Существовали некоторые доводы, что таких спиралей должно быть три штуки. Следовательно, надо было скрутить три спиральные молекулы и припасовать их друг к другу так, чтобы удовлетворить требованиям насыщения всяческих сил, действующих между основаниями этих трех спиралей.

Теперь, когда разгадка известна, кажутся совершенно непонятными попытки Крика и Уотсона найти решение в трехспиральном варианте. А на это был потрачен целый год. Лишь после многолетних проб Уотсону пришла в голову мысль: а может быть, спиралей не три, а две?

Проба двойной спирали почти немедленно увенчалась успехом. Модель получилась изящной, естественной и включала в себя важные открытия других исследователей, а именно данных Франклин о том, как расположены фосфатные группы, и замечания Доногю о том, какая связь между аденином и тимином является наиболее подходящей. Просто невозможно было допустить ошибку: уж очень «хорошо» и притом единственным способом припасовывались друг к

1 ... 53 54 55 56 57 58 59 60 61 62
Перейти на страницу:

Еще книги автора «Александр Исаакович Китайгородский»: