Шрифт:
Закладка:
В будущем важную роль в контроле окружающей среды и в клинической диагностике должны сыграть такие методы, как биолюминесцентный анализ и иммуноферментный анализ.
В медицине иммобилизованные ферменты открыли путь к созданию лекарственных препаратов пролонгированного действия со сниженной токсичностью и аллергенностью. Иммобилизационные подходы способствуют решению проблемы направленного транспорта лекарств в организме.
Проблемы биоконверсии массы и энергии в настоящее время пытаются решить микробиологическим путем. Тем не менее иммобилизованные ферменты вносят ощутимый вклад в осуществление фотолиза воды и в биоэлектрокатализ.
Заслуживает внимание и использование иммобилизованных ферментов в процессах переработки лигноцеллюлозного сырья.
Иммобилизованные ферменты могут использоваться и как усилители слабых сигналов. На активный центр иммобилизованного фермента можно подействовать через носитель, подвергая последний ультразвуковой обработке, механическим нагрузкам или фотохимическим превращениям. Это позволяет регулировать каталитическую активность системы фермент — носитель под действием механических, ультразвуковых и световых сигналов. На этой основе были созданы механо- и звукочувствительные датчики и открыт путь к бессеребряной фотографии.
Промышленные процессы с применением иммобилизованных ферментов внедрены прежде всего в пищевую и фармацевтическую промышленность. В пищевой промышленности с участием иммобилизованных ферментов идут процессы получения глюкозо-фруктовых сиропов, глюкозы, яблочной и аспарагиновой кислоты, оптически активных L-аминокислот, диетического безлактозного молока, сахаров из молочной сыворотки и др.
В медицине иммобилизованные ферменты используются также как лекарственные препараты, особенно в тех случаях, когда необходимо локальное воздействие. Кроме того, биокатализаторы широко используются в различных аппаратах для перфузионной очистки различных биологических жидкостей. Возможности и перспективы использования в медицине ферментов в иммобилизованном состоянии гораздо шире, чем достигнутые на сегодняшний день, именно на этом пути медицину ждет создание новых высокоэффективных методов лечения.
ИММОБИЛИЗОВАННЫЕ КЛЕТКИ МИКРООРГАНИЗМОВ
В 70-х годах XX века появились первые публикации об иммобилизации клеток микроорганизмов, а первое промышленное применение иммобилизованных клеток было осуществлено в Японии в 1974 г. С их помощью получали аспарагиновую кисло-
Иммобилизованные клетки имеют ряд преимуществ как перед иммобилизованными ферментами, так и перед свободными клетками:
— отсутствие затрат на выделение и очистку ферментов; — снижение затрат на выделение и очистку продуктов реакции;
— более высокая активность и стабильность;
— возможность создания непрерывных и полунепрерывных автоматизированных процессов;
— способность к длительному функционированию полиферментных систем без экзогенных кофакторов.
Для иммобилизации могут быть использованы клетки в различном состоянии: живые и поврежденные в различной степени. Одностадийные реакции могут осуществлять и живые, и поврежденные клетки. Полиферментные реакции проводят с применением живых клеток, которые могут длительное время регенерировать АТФ и коферменты (НАДФ, НАД).
Проблема использования ферментативной активности иммобилизованных микроорганизмов имеет глубокие корни. Более 150 лет назад быстрый способ получения уксуса был основан на применении микроорганизмов, адсорбированных на древесной стружке. Методы иммобилизации клеток схожи с методами иммобилизации ферментов.
Химический метод основан на образовании ковалентных связей с активированным носителем, на поперечной сшивке клеток за счет активных групп в клеточной оболочке с бифункциональными реагентами (например, глутаровым альдегидом)
К физическим методам относятся адсорбция и агрегация.
Иммобилизация клеток путем включения в различные гели, мембраны, волокна основана на химических и физических взаимодействиях. Химические методы используются реже по сравнению с другими методами и малопригодны для иммобилизации живых клеток. Гораздо большее распространение получило включение клеток в состав гелей, мембран и волокон. При таком способе иммобилизации клетки могут сохранять жизнеспособность и в присутствии питательной среды размножаться в приповерхностных слоях гелей. Биокаталитическая активность целых иммобилизованных клеток в настоящее время может быть использована в различных отраслях науки и техники:
— при биосинтезе и трансформации таких соединений, как аминокислоты, органические кислоты, антибиотики, стероиды углеводы, углеводороды, нуклеотиды и нуклеозиды;
— в пивоварении и виноделии;
— при очистке сточных и природных вод;
— при извлечении металлов из сточных вод;
— при ассимиляции солнечной энергии;
— при изготовлении водородных солнечных элементов;
— в азотфиксации;
— в аналитических целях при изготовлении электродов.
Наибольшее количество исследований по иммобилизации клеток микроорганизмов проведено японскими исследователями. Особые успехи были достигнуты ими в области синтеза аминокислот, органических кислот и антибиотиков. В Московском государственном университете был разработан метод получения аспарагиновой кислоты, который по эфективности не уступает японским. Клетки E.coli, включенные в армированный полиакриламидный гель, были с успехом использованы для получения аспарагиновой кислоты, период полужизни катализатора — 110 суток. Иммобилизовать можно не только клетки микроорганизмов, но и клетки растительных и животных тканей, используя их для синтеза физиологически активных соединений.
Интересные возможность открываются и при иммобилизации клеточных органелл как активных полиферментных систем. Все это свидетельствует о перспективности развития одного из направлений биотехнологии, связанного с изучением и применением иммобилизованных клеток.
БИОТЕХНОЛОГИЯ И ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ
Биодеградация ксенобиотиков
В удалении ксенобиотиков из окружающей среды важны несколько факторов:
— устойчивость ксенобиотиков к различным воздействиям;
— растворимость их в воде;
— летучесть ксенобиотиков;
— pH среды;
— способность ксенобиотиков поступать в клетки микроорганизмов;
— сходство ксенобиотиков и природных соединений, подвергающихся естественной биодеградации.
Для биодеградации ксенобиотиков лучше использовать ассоциации микроорганизмов, так как они более эффективны, чем отдельно взятые виды. При этом типы связей в подобной ассоциации могут быть различны. Один вид микроорганизмов может непосредственно участвовать в разложении ксенобиотиков, а другой — поставлять недостающие питательные вещества. Это может быть метаболическая «атака» на субстрат, когда синтезируются разные компоненты ферментативного комплекса, или же цепочка ферментативных реакций (многосубстратные конверсии) и т. д.
Особенно трудно разлагаются такие биоциды, как детергенты, пластики и углеводороды. Самыми способными к борьбе с загрязнителями различного типа являются представители рода Pseudomonas — они практически «всеядны». Клетки этих микроорганизмов содержат оксидоредуктазы и гидроксилазы, способные разлагать большое число молекул углеводородов и ароматических соединений, таких как бензол, ксилол, толуол. Гены, кодирующие эти ферменты, находятся в составе плазмид. Например, плазмида ОСТ отвечает за разложение октана и гексана, XYL — ксилола и толуола, NAH — нафталина, САМ — камфары. Плазмиды САМ и NAH обеспечивают собственный перенос, индуцируя скрещивание бактериальных клеток; остальные плазмиды могут быть перенесены только в том случае, если в бактерии введены другие плазмиды, обеспечивающие скрещивание.
В 1979 г. Чакрабарти (в то время совместно с компанией «Дженерал электрик») после успешных скрещиваний получил штамм, содержащий плазмиды XYL и NAH, а также гибридную плазмиду, полученную путем рекомбинации частей плазмид САМ и ОСТ (сами по себе они несовместимы, т. е. не могут сосуществовать как отдельные плазмиды в одной бактериальной клетке). Этот штамм способен быстро расти на неочищенной нефти, так как он метаболизирует углеводороды гораздо активнее, чем любой из штаммов, содержащих только одну плазмиду. Штамм может быть особенно полезен в очистных водоемах для сточных вод, где можно контролировать температуру и другие внешние факторы.
Эти