Шрифт:
Закладка:
Стволовые клетки, выращенные из собственных клеток пациента, могут обеспечить его совместимой тканью любого типа. Однажды наступит такой день, когда можно будет взять, например, клетки кожи и превратить их в клетки сердечной мышцы, чтобы восстановить повреждения после сердечного приступа. Потенциально из стволовых клеток можно получить инсулин-продуцирующие клетки для лечения диабета. В будущем из стволовых клеток можно выращивать нервные клетки для восстановления разорванного спинного мозга или по тому же принципу восстанавливать поврежденные сердце или печень. Кроме того, стволовые клетки дают надежду людям, теряющим разум из-за болезни Альцгеймера или тело из-за болезни Паркинсона.
Но перед тем как поставить выращивание замещающих клеток на поток, мы должны научиться наставлять стволовую клетку на правильный путь развития. Если не сделать это должным образом, ее развитие может пойти в неожиданном направлении, вплоть до превращения в раковую клетку [13]. Поэтому пройдут годы и даже десятилетия, прежде чем лабораторная наука станет надежным методом лечения.
Вот почему так важно инвестировать в самую творческую базовую науку. Когда Джон Гёрдон совершал свое открытие по перепрограммированию клеточного ядра, он не думал о том, что однажды оно будет использоваться для улучшения здоровья. Большинство ученых, занимающихся фундаментальными исследованиями, ощущают то же самое. Правильно усвоив основы и разобравшись в том, как работает биология, можно гораздо успешнее применять эти знания в терапии.
Первые эмбриональные стволовые клетки
В предыдущих главах я рассказывала об основном прорыве в науке, случившемся в 1981 году, когда Мартин Эванс и Мэтью Кауфман и параллельно с ними Гейл Мартин изолировали ЭС-клетки, обладающие потенциалом превращаться во все остальные клетки организма. А в 1998 году Джеймс Томсон со своей командой из Висконсинского университета города Мэдисона выделили человеческие стволовые клетки из пожертвованных лишних эмбрионов. Исследование стало крупным техническим достижением, а Томсон заявил: «Это больше не научная фантастика. Я очень надеюсь, что успею увидеть, как эта терапия исцеляет болезни» [14].
С тех пор как Томсон и его коллеги извлекли человеческие ЭС-клетки, многие ученые стремились раскрыть их потенциал. А также сделать созданные методы терапии более легкими в применении. Например, оказалось, что ингибирование сигнального пути ROCK (назван так потому, что туда входит фермент Rho/Rho-ассоциированная киназа, или ROCK) предотвращает гибель человеческих ЭС-клеток после извлечения из колонии, в которой они выросли. Благодаря этому открытию показатель создания новых колоний увеличился от одного из ста до одного из четырех [15].
Сегодня эти бесценные клетки можно надежно поддерживать в культуре.
Управляемая дифференциация
Чтобы превращать ЭС-клетки в другие типы, необходимые для лечения, надо разобраться в том, как они формируют и генерируют три разных эмбриональных слоя (эктодерму, мезодерму и энтодерму), а затем в том, как эктодерма образует нервы, кожу и волосяные фолликулы, как мезодерма создает сердце, кровь и мышцы, а энтодерма становится кишечником, печенью, поджелудочной железой и легкими. Звучит просто, хотя на самом деле это не так.
Чтобы направить ЭС-клетки на путь превращения в целевой тип клеток, ученые проявили огромную изобретательность, создавая специальные поверхности, составляя генетические регуляторные сети, ответственные за поддержание стволовых клеток, а также оптимизируя условия выращивания. Теперь можно создать клетки сетчатки, сердечной мышцы, нервные клетки, многочисленные типы клеток крови и многое другое. Но все это требует времени. Один из ученых, которым я особенно восхищаюсь, Дуг Мелтон из Гарвардского института стволовых клеток в Кембридже, штат Массачусетс, превратил стволовые клетки в бета-клетки поджелудочной железы, чувствительные к глюкозе и вырабатывающие инсулин [16]. Открытие способа создания зрелого типа клеток стало важной вехой в исследовании диабета, но на это ушли годы. Упорство Дуга было вызвано личными причинами: в 1993 году, когда он занимался исследованием развития лягушек, у его сына обнаружили диабет первого типа [17]. С тех пор Дуг сосредоточился на поиске новых методов лечения.
Даже для эмбриологов такая работа является источником новых идей и неожиданных открытий. Вплоть до недавнего момента мы думали, что новые кровеносные сосуды эмбриона образуются исключительно из тех эндотелиальных клеток (выстилающих все кровеносные сосуды), что дифференцируются из мезодермы. Однако использование флуоресцентных меток при отслеживании судьбы стволовых клеток кровотока позволило обнаружить второй источник эндотелиальных клеток [18].
Это всего один из множества примеров того, как практическая работа со стволовыми клетками приносит новую информацию в копилку фундаментальных знаний биологии развития. Я уверена, что в ближайшие годы будет раскрыто еще больше тайн.
Взгляд изнутри
Многие годы я и моя команда совершенствовали маркеры и условия культивирования, чтобы снимать фильмы о развивающихся эмбрионах, благодаря которым можно было проследить происхождение, перемещение и судьбу всех клеток с момента оплодотворения до четвертого дня развития мышиного эмбриона [19]. Совсем недавно нам удалось заснять и отследить клетки эмбриона с четвертого по шестой день развития [20]. Это гораздо сложнее, чем следить за клетками более «юных» эмбрионов, поскольку в этот период эмбрион начинает расти. Но потраченные усилия того стоили. Сделанные фильмы позволили нам изучить взаимодействия трех базовых типов тканей и механизмов, лежащих в основе ремоделирования эмбриона вплоть до гаструляции. В значительной мере получение этой новой информации стало возможным благодаря визуализации живых мышиных эмбрионов с помощью мультифотонного микроскопа, которому нужно поглотить два фотона света (отсюда и название), чтобы вызвать флуоресценцию, и который способен визуализировать слои живой ткани на глубине до одного миллиметра. Заслуга за эту работу принадлежит коллегам из моей лаборатории Неофитосу Христодулу, Кристосу Киприану и Антонии Веберлинг. Первая часть их исследования была опубликована в журнале Nature Cell Biology [21].
За последний год Кейт Макдолл и Филипп Келлер из Исследовательского центра Janelia Research Campus разработали новый микроскоп, позволяющий визуализировать развитие еще более «взрослых» мышиных эмбрионов, от шести до восьми дней после оплодотворения [22]. Принцип действия этого микроскопа в том, чтобы пропустить сквозь эмбрион два плоских пучка света, избежав освещения образца целиком в течение долгого времени, поскольку это может ему навредить. В итоге получаются сногсшибательные фильмы. Можно, например, увидеть, как нервная трубка, структура, которая позже сформирует спинной и головной мозг, срастается вдоль эмбриона, будто застежка-молния. Можно также понаблюдать формирование сердца, от предсердия до эндокарда и, наконец, сердцебиения.
Кто-то скажет, что это всего лишь фильмы. Однако по ним анализировать клеточную динамику легче, чем по статическим изображениям, что позволяет глубже понять механизмы эмбрионального развития. Хотя эти фильмы не о человеческих