Онлайн
библиотека книг
Книги онлайн » Разная литература » Занимательная теория вероятности - Александр Исаакович Китайгородский

Шрифт:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 62
Перейти на страницу:
четырехгранные, двенадцатигранные и даже двадцатигранные. Но, разумеется, больше всего находили шестигранные, то есть кубы. Главная причина преимущественного их распространения — простота изготовления. Удобно и то, что цифры от единицы до шести не слишком малы и не слишком велики. Действительно, оперирование, скажем, с двадцатигранниками потребовало бы уже умственных напряжений для производства арифметических действий. Поэтому кости иной формы, чем кубы, применялись в основном для предсказания судьбы.

Впрочем, двадцатигранники нашли в последние годы себе применение в науке. Японские фирмы выпустили кость, на которой противоположные грани обозначены одним числом. Таким образом при бросании выпадают цифры от 0 до 9. Бросая кость, мы можем создавать ряды случайных цифр, которые нужны (об этом мы расскажем позже) для проведения весьма серьезных расчетов так называемым методом Монте-Карло.

Популярность игры в кости в Древней Греции, в Древнем Риме и в Европе в Средние века была исключительно велика, в основном, конечно, среди высших слоев населения и духовенства. Увлечение игрой в кости слугами церкви было столь значительно, что епископ Кембрезийский Витольд, не сумевший ее запретить, заменил игрой в «добродетели». Что это за игра? Да вместо цифр на гранях костей были изображены символы добродетелей. Правила игры, правда, были сложными, нелегким был и итог: выигравший должен был направить на путь истинный (в отношении проигранной добродетели) того монаха, который потерпел поражение.

Вряд ли эта подмена радовала служителей культа, так как, несмотря на то, что государственные и церковные деятели неоднократно запрещали монахам играть в азартные игры, те продолжали «тешить беса».

Еще труднее было бороться с этой страстью у придворных, рыцарей, дворян и прочей знати. Указами и сообщениями о наказаниях за нарушение этих указов, жалобами членов семьи на своего кормильца и другими подобными историями полна средневековая пресса.

Насколько увлечение было сильно, можно судить по тому, что существовали не только ремесленники, изготовлявшие кости, но и школы по изучению премудростей игры.

Играли двумя костями, а больше — тремя. Их встряхивали в кубке или в руке и бросали на доску. Игр существовало множество. Но, вероятно, наибольшее распространение имело прямолинейное сражение — кто выбросит большую сумму очков.

У нас в России игральные кости не пользовались большой популярностью. Возможно, это объясняется тем, что «просвещение» захватило наши придворные круги уже тогда, когда в Европе мода на кости прошла и появились карты. Зато игра в орлянку процветала повсеместно. Мы оставим без внимания эту простую игру и вернемся к более сложной — к игре с костью-кубом с шестью цифрами.

Итак, игрок дрожащей рукой встряхивает кубок и выбрасывает из него кости. Вверх смотрят какие-то цифры. Какие? Любые. Предсказать их невозможно, так как здесь господствует «его величество случай». Результат события случаен, потому что зависит от большого числа неконтролируемых мелочей: и как кости легли в кубке, и какова была сила и направление броска, и как каждая из костей встретилась с доской, на которую бросали кости. Достаточно крошечного, микронного смещения в начале опыта, чтобы полностью изменился конечный результат.

Таким образом, огромное число факторов делает совершенно непредсказуемым результат выброса костей, изготовленных без жульничества. А рассуждения о том, что вот если бы была возможность разместить кости в кубке в положении, фиксируемом с микронной точностью, да если бы еще направление выбрасывания костей можно было бы установить с точностью тысячных долей углового градуса, да, кроме того, силу броска измерить с точностью до миллионных долей грамма… вот тогда можно было бы предсказать результат и случай был бы с позором изгнан из этого опыта, — есть абсолютно пустой разговор. Ведь постоянство условий, при которых протекает явление или ставится опыт, есть практическое понятие. То есть я говорю, что условия проведения двух испытаний одинаковы лишь в том случае, если не могу установить различий между ними.

Если тысячи и миллионы опытов, поставленных в одних и тех же условиях, всегда приводят к определенному событию (выпущенное из руки яблоко падает на землю), то событие называется достоверным. А коль скоро миллионы опытов показывают, что некоторый их исход никогда не наблюдается (невозможно одним караваем хлеба накормить тысячу голодных людей), то такие события называются невозможными.

Случайные события лежат между этими двумя крайностями. Они иногда происходят, а иногда нет, хотя практически условия, при которых мы их наблюдаем, не меняются.

Выпадение кости — классический пример случайного события. И все же интересно, можно ли наперед предусмотреть, предугадать, наконец, рассчитать и предсказать результат такого события, и как это делается?

Когда мы сталкиваемся с одинаковыми ситуациями, которые приводят к случайным исходам, на сцене появляется слово «вероятность». Вероятность — это число. А раз так, то оно относится к точным понятиям; и чтобы не попасть впросак, надо пользоваться этим словом с той определенностью и недвусмысленностью, которые приняты в естествознании.

Рассуждение начинается так. Есть некая исходная ситуация, которая может привести к разным результатам: кость-кубик может упасть вверх любой гранью, из колоды берется карта — она может быть любой масти, родился человек — это может быть мальчик или девочка, завтра наступит 10 сентября — день может быть дождливым или солнечным… Число исходов событий может быть самым разным, и мы должны все их держать в уме и знать, что один из них произойдет обязательно, то есть достоверно.

Перечислив все возможные исходы, возникающие из некой ситуации, математик скажет: дана группа исходов события, которая является предметом изучения теории вероятностей.

Различные результаты события, то есть различные представители группы, могут быть равновозможными. Этот самый простой вариант случайности осуществляется в азартных играх. (Потому мы и начали книгу рассказом об азартных играх.) Введем число вероятности на примере игральной кости.

Группой исходов события является выпадение единицы, двойки, тройки, четверки, пятерки и шестерки. «Исход события» звучит немного громоздко, и мы надеемся, что читатель не будет путаться, если мы иногда не станем писать первое слово. Итак, событий в группе шесть — это полное число событий.

Следующий вопрос, который надо себе задать, таков: сколько из этих событий дают интересующий нас результат? Допустим, мы хотим узнать вероятность выпадения тройки, то есть нас волнует осуществление одного события из группы в шесть. Тогда число благоприятных вариантов (одно — тройка) делят на полное число событий и получают вероятность появления интересующего нас события. В нашем примере вероятность выпадения тройки будет равна 1/6. А чему равна вероятность появления четной цифры? Очевидно, 3/6 (три благоприятных события делят на общее число событий, равное шести). Вероятность же выхода на кости числа, кратного трем, равна 2/6.

Еще

1 2 3 4 5 6 7 8 9 10 ... 62
Перейти на страницу:

Еще книги автора «Александр Исаакович Китайгородский»: